iTRAQ-Based LC-LC MALDI TOF/TOF MS Quantitative Analysis of Membrane Proteins from Human Glioma

  • Uroš RajčevićEmail author
Part of the Neuromethods book series (NM, volume 57)


Various proteomic approaches are being applied in brain tumor proteomics with regard to targeted proteins of interest, to discover phenotype specific markers which could facilitate diagnosis as well as potential antitumor drug targets. iTRAQ technology is a multiplexing protein quantitation strategy that provides relative and absolute measurements of protein abundance in complex mixtures based on the differential labeling of the proteins. Combined with membrane enrichment methodology, separation of the labeled peptides by two-dimensional liquid chromatography linked to tandem mass spectrometry and adequate data-mining, it can provide an excellent tool in search for novel isoform- and species-specific biomarkers and drug targets in various biotechnological and biomedical applications.Glioblastoma (GBM) is the most frequent primary brain tumor diagnosed in adults and remains one of the most lethal forms of human cancer. No biomarkers can distinguish different cell populations within GBMs or predict the potential of low grade gliomas to develop into malignant angiogenic gliomas. In our study, we have used iTRAQ-based technology to search for novel biomarkes of GBM.

Key words

iTRAQ Glioblastoma Biomarkers Glioma invasion Angiogenesis Subproteome Quantitative mass spectrometry 2D-LC 



The work presented in this chapter was supported by EU FP6 Integrated project grant “Angiotargeting” (contract number 504743), by CRP-Santé, the Research Ministry (MCESR) in Luxembourg and by grant AFR-PDR-08-007 from the FNR, Luxembourg. The author is grateful to Dr. S.P. Niclou and Prof. R. Bjerkvig NorLux Neuro-Oncology laboratory, CRP-Santé, Luxembourg and Department of Biomedicine, University in Bergen, Norway for their invaluable support with this project and critical review of the manuscript. Drs. C. R. Jimenez and J. Knol, Oncoproteomics Laboratory, VU University Medical Center in Amsterdam, The Netherlands are kindly acknowledged for their help.


  1. 1.
    Rajcevic, U., Niclou, S. P. and Jimenez, C. R. (2009) Proteomics strategies for target identification and biomarker discovery in cancer Front Biosci 14, 3292–303.PubMedCrossRefGoogle Scholar
  2. 2.
    Bantscheff, M., Schirle, M., Sweetman, G., Rick, J. and Kuster, B. (2007) Quantitative mass spectrometry in proteomics: a critical review Analytical and bioanalytical chemistry 389, 1017–31.PubMedCrossRefGoogle Scholar
  3. 3.
    Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H., Pandey, A. and Mann, M. (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics Mol Cell Proteomics 1, 376–86.CrossRefGoogle Scholar
  4. 4.
    Kruger, M., Moser, M., Ussar, S., Thievessen, I., Luber, C. A., Forner, F., Schmidt, S., Zanivan, S., Fassler, R. and Mann, M. (2008) SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function Cell 134, 353–64.PubMedCrossRefGoogle Scholar
  5. 5.
    Blagoev, B., Kratchmarova, I., Ong, S. E., Nielsen, M., Foster, L. J. and Mann, M. (2003) A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling Nat Biotechnol 21, 315–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Foster, L. J., Rudich, A., Talior, I., Patel, N., Huang, X., Furtado, L. M., Bilan, P. J., Mann, M. and Klip, A. (2006) Insulin-dependent interactions of proteins with GLUT4 revealed through stable isotope labeling by amino acids in cell ­culture (SILAC) J Proteome Res 5, 64–75.PubMedCrossRefGoogle Scholar
  7. 7.
    Yao, X., Freas, A., Ramirez, J., Demirev, P. A. and Fenselau, C. (2001) Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus Anal Chem 73, 2836–42.PubMedCrossRefGoogle Scholar
  8. 8.
    Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H. and Aebersold, R. (1999) Quantitative analysis of complex protein ­mixtures using isotope-coded affinity tags Nat Biotechnol 17, 994–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Froment, C., Uttenweiler-Joseph, S., Bousquet-Dubouch, M. P., Matondo, M., Borges, J. P., Esmenjaud, C., Lacroix, C., Monsarrat, B. and Burlet-Schiltz, O. (2005) A quantitative proteomic approach using ­two-dimensional gel electrophoresis and ­isotope-coded affinity tag labeling for studying human 20S proteasome heterogeneity Proteomics 5, 2351–63.PubMedCrossRefGoogle Scholar
  10. 10.
    Brand, M., Ranish, J. A., Kummer, N. T., Hamilton, J., Igarashi, K., Francastel, C., Chi, T. H., Crabtree, G. R., Aebersold, R. and Groudine, M. (2004) Dynamic changes in transcription factor complexes during erythroid differentiation revealed by quantitative proteomics Nat Struct Mol Biol 11, 73–80.PubMedCrossRefGoogle Scholar
  11. 11.
    Ranish, J. A., Yi, E. C., Leslie, D. M., Purvine, S. O., Goodlett, D. R., Eng, J. and Aebersold, R. (2003) The study of macromolecular ­complexes by quantitative proteomics Nat Genet 33, 349–55.PubMedCrossRefGoogle Scholar
  12. 12.
    Shiio, Y., Rose, D. W., Aur, R., Donohoe, S., Aebersold, R. and Eisenman, R. N. (2006) Identification and characterization of SAP25, a novel component of the mSin3 corepressor complex Mol Cell Biol 26, 1386–97.PubMedCrossRefGoogle Scholar
  13. 13.
    Li, K. W., Hornshaw, M. P., Van Der Schors, R. C., Watson, R., Tate, S., Casetta, B., Jimenez, C. R., Gouwenberg, Y., Gundelfinger, E. D., Smalla, K. H. and Smit, A. B. (2004) Proteomics analysis of rat brain postsynaptic density. Implications of the diverse protein functional groups for the integration of ­synaptic physiology The Journal of biological chemistry 279, 987–1002.Google Scholar
  14. 14.
    Ross, P. L., Huang, Y. N., Marchese, J. N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., Purkayastha, S., Juhasz, P., Martin, S., Bartlet-Jones, M., He, F., Jacobson, A. and Pappin, D. J. (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents Mol Cell Proteomics 3, 1154–69.PubMedCrossRefGoogle Scholar
  15. 15.
    Keshamouni, V. G., Michailidis, G., Grasso, C. S., Anthwal, S., Strahler, J. R., Walker, A., Arenberg, D. A., Reddy, R. C., Akulapalli, S., Thannickal, V. J., Standiford, T. J., Andrews, P. C. and Omenn, G. S. (2006) Differential protein expression profiling by iTRAQ-2DLC-MS/MS of lung cancer cells undergoing epithelial-mesenchymal transition reveals a migratory/invasive phenotype J Proteome Res 5, 1143–54.PubMedCrossRefGoogle Scholar
  16. 16.
    de Souza, G. A., Godoy, L. M. and Mann, M. (2006) Identification of 491 proteins in the tear fluid proteome reveals a large number of proteases and protease inhibitors Genome ­biology 7, R72.PubMedCrossRefGoogle Scholar
  17. 17.
    Li, K. W., Miller, S., Klychnikov, O., Loos, M., Stahl-Zeng, J., Spijker, S., Mayford, M. and Smit, A. B. (2007) Quantitative proteomics and protein network analysis of hippocampal synapses of CaMKIIalpha mutant mice J Proteome Res 6, 3127–33.PubMedCrossRefGoogle Scholar
  18. 18.
    Mukherjee, J., DeSouza, L. V., Micallef, J., Karim, Z., Croul, S., Siu, K. W. and Guha, A. (2009) Loss of collapsin response mediator Protein1, as detected by iTRAQ analysis, promotes invasion of human gliomas expressing mutant EGFRvIII Cancer Res 69, 8545–54.PubMedCrossRefGoogle Scholar
  19. 19.
    Sakariassen, P. O., Prestegarden, L., Wang, J., Skaftnesmo, K. O., Mahesparan, R., Molthoff, C., Sminia, P., Sundlisaeter, E., Misra, A., Tysnes, B. B., Chekenya, M., Peters, H., Lende, G., Kalland, K. H., Oyan, A. M., Petersen, K., Jonassen, I., van der Kogel, A., Feuerstein, B. G., Terzis, A. J., Bjerkvig, R. and Enger, P. O. (2006) Angiogenesis-independent tumor growth mediated by stem-like cancer cells Proc Natl Acad Sci USA 103, 16466–71.PubMedCrossRefGoogle Scholar
  20. 20.
    Hopkins, A. L. and Groom, C. R. (2003) Target analysis: a priori assessment of druggability Ernst Schering Res Found Workshop 11–7.Google Scholar
  21. 21.
    Josic, D. and Clifton, J. G. (2007) Mammalian plasma membrane proteomics Proteomics 7, 3010–29.PubMedCrossRefGoogle Scholar
  22. 22.
    Josic, D., Clifton, J. G., Kovac, S. and Hixson, D. C. (2008) Membrane proteins as diagnostic biomarkers and targets for new therapies Curr Opin Mol Ther 10, 116–23.PubMedGoogle Scholar
  23. 23.
    Rabilloud, T. (2003) Membrane proteins ride shotgun Nat Biotechnol 21, 508–10.PubMedCrossRefGoogle Scholar
  24. 24.
    Rajcevic, U., Petersen, K., Knol, J. C., Loos, M., Bougnaud, S., Klychnikov, O., Li, K. W., Pham, T. V., Wang, J., Miletic, H., Peng, Z., Bjerkvig, R., Jimenez, C. R. and Niclou, S. P. (2009) iTRAQ based proteomic profiling reveals increased metabolic activity and cellular crosstalk in angiogenic compared to invasive Glioblastoma phenotype Mol Cell Proteomics.Google Scholar
  25. 25.
    Terzis, A. J., Niclou, S. P., Rajcevic, U., Danzeisen, C. and Bjerkvig, R. (2006) Cell therapies for glioblastoma Expert Opin Biol Ther 6, 739–49.PubMedCrossRefGoogle Scholar
  26. 26.
    Wen, P. Y. and Kesari, S. (2008) Malignant gliomas in adults N Engl J Med 359, 492–507.PubMedCrossRefGoogle Scholar
  27. 27.
    Carmeliet, P. and Jain, R. K. (2000) Angiogenesis in cancer and other diseases Nature 407, 249–57.PubMedCrossRefGoogle Scholar
  28. 28.
    Jain, R. K., di Tomaso, E., Duda, D. G., Loeffler, J. S., Sorensen, A. G. and Batchelor, T. T. (2007) Angiogenesis in brain tumours Nat Rev Neurosci 8, 610–22.PubMedCrossRefGoogle Scholar
  29. 29.
    Reiss, Y., Machein, M. R. and Plate, K. H. (2005) The role of angiopoietins during angiogenesis in gliomas Brain Pathol 15, 311–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Bogler, O. and Sawaya, R. (2008) Biomarkers and cancer stem cells in primary brain tumors. Foreword Curr Probl Cancer 32, 95–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Billecke, C., Malik, I., Movsisyan, A., Sulghani, S., Sharif, A., Mikkelsen, T., Farrell, N. P. and Bogler, O. (2006) Analysis of glioma cell platinum response by metacomparison of two-dimensional chromatographic proteome profiles Mol Cell Proteomics 5, 35–42.PubMedGoogle Scholar
  32. 32.
    Hamler, R. L., Zhu, K., Buchanan, N. S., Kreunin, P., Kachman, M. T., Miller, F. R. and Lubman, D. M. (2004) A two-dimensional liquid-phase separation method coupled with mass spectrometry for proteomic studies of breast cancer and biomarker identification Proteomics 4, 562–77.PubMedCrossRefGoogle Scholar
  33. 33.
    Lubman, D. M., Kachman, M. T., Wang, H., Gong, S., Yan, F., Hamler, R. L., O’Neil, K. A., Zhu, K., Buchanan, N. S. and Barder, T. J. (2002) Two-dimensional liquid separations-mass mapping of proteins from human cancer cell lysates J Chromatogr B Analyt Technol Biomed Life Sci 782, 183–96.PubMedCrossRefGoogle Scholar
  34. 34.
    Wang, Y. C., Choi, M. H. and Han, J. (2004) Two-dimensional protein separation with advanced sample and buffer isolation using microfluidic valves Anal Chem 76, 4426–31.PubMedCrossRefGoogle Scholar
  35. 35.
    Furuta, M., Weil, R. J., Vortmeyer, A. O., Huang, S., Lei, J., Huang, T. N., Lee, Y. S., Bhowmick, D. A., Lubensky, I. A., Oldfield, E. H. and Zhuang, Z. (2004) Protein patterns and proteins that identify subtypes of glioblastoma multiforme Oncogene 23, 6806–14.PubMedCrossRefGoogle Scholar
  36. 36.
    Guo, T., Wang, W., Rudnick, P. A., Song, T., Li, J., Zhuang, Z., Weil, R. J., DeVoe, D. L., Lee, C. S. and Balgley, B. M. (2007) Proteome analysis of microdissected formalin-fixed and paraffin-embedded tissue specimens J Histochem Cytochem 55, 763–72.PubMedCrossRefGoogle Scholar
  37. 37.
    Mustafa, D. A., Burgers, P. C., Dekker, L. J., Charif, H., Titulaer, M. K., Smitt, P. A., Luider, T. M. and Kros, J. M. (2007) Identification of glioma neovascularization-related proteins by using MALDI-FTMS and nano-LC fractionation to microdissected tumor vessels Mol Cell Proteomics 6, 1147–57.PubMedCrossRefGoogle Scholar
  38. 38.
    Huang, P. H., Mukasa, A., Bonavia, R., Flynn, R. A., Brewer, Z. E., Cavenee, W. K., Furnari, F. B. and White, F. M. (2007) Quantitative analysis of EGFRvIII cellular signaling networks reveals a combinatorial therapeutic strategy for ­glioblastoma Proc Natl Acad Sci USA 104, 12867–72.PubMedCrossRefGoogle Scholar
  39. 39.
    Li, K.W, Hornshaw, M. P., van Minnen, J., Smalla, K. H., Gundelfinger, E. D. and Smit, A. B. (2005) Organelle proteomics of rat synaptic proteins: correlation-profiling by isotope-coded affinity tagging in conjunction with liquid chromatography-tandem mass ­spectrometry to reveal post-synaptic density specific proteins J Proteome Res 4, 725–33.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Norlux Neuro-Oncology LaboratoryCRP-SantéStrassenLuxembourg
  2. 2.Department of Genetic Toxicology and Cancer BiologyNational Institute of BiologyLjubljanaSlovenia

Personalised recommendations