Skip to main content

Exploiting the Liberation of Zn2+ to Measure Cell Viability

  • Protocol
  • First Online:
Mammalian Cell Viability

Part of the book series: Methods in Molecular Biology ((MIMB,volume 740))

  • 8110 Accesses

Abstract

Zn2+ ions are a critical component of cellular machinery. The ion is required for the function of many cell components crucial to survival, such as transcription factors, protein synthetic machinery, metabolic enzymes, hormone packaging, among other roles. In stark contrast to the cells’ necessity for a sufficient Zn2+ supply, an excess of free Zn2+ is a situation that results in acute toxicity. Under normal conditions, free Zn2+ levels in the cell are extremely low; whereas estimates of free Zn2+ are in the subpicomolar range. In this way, the detection of elevated intracellular Zn2+ can be exploited as a highly sensitive and specific signal to indicate neuronal dysfunction. We have shown that the relationship between intracellular Zn2+ accumulation and the development of cellular injury/death to be ubiquitous among each of five tissue types tested; demonstrating the broad application and utility of the present technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vallee BL, Falchuk KH. The biochemical basis of zinc physiology. Physiol Rev 1993;73(1):79–118.

    Article  PubMed  CAS  Google Scholar 

  2. Frederickson CJ, Bush AI. Synaptically released zinc: physiological functions and pathological effects. Biometals 2001;14(3–4):353–66.

    Article  PubMed  CAS  Google Scholar 

  3. Colvin RA, Fontaine CP, Laskowski M, Thomas D. Zn2+ transporters and Zn2+ homeostasis in neurons. Eur J Pharmacol 2003;479(1–3):171–85.

    Article  PubMed  CAS  Google Scholar 

  4. Koh, J.Y., Suh, S.W., Gwag, B.J., He, Y.Y., Hsu, C.Y. & Choi, D.W. (1996) The role of zinc in selective neuronal death after transient global cerebral ischemia. Science, 272, 1013–1016.

    Article  PubMed  CAS  Google Scholar 

  5. Land PW, Aizenman E. Zinc accumulation after target loss: an early event in retrograde degeneration of thalamic neurons. Eur J Neurosci 2005;21(3):647–57.

    Article  PubMed  Google Scholar 

  6. Lee JY, Hwang JJ, Park MH, Koh JY. Cytosolic labile zinc: a marker for apoptosis in the developing rat brain. Eur J Neurosci. 2006 Jan;23(2):435–42.

    Article  PubMed  CAS  Google Scholar 

  7. Bossy-Wetzel E, Talantova MV, Lee WD, Scholzke MN, Harrop A, Mathews E, et al. Crosstalk between nitric oxide and zinc pathways to neuronal cell death involving mitochondrial dysfunction and p38-activated K+ channels. Neuron 2004;41(3):351–65.

    Article  PubMed  CAS  Google Scholar 

  8. Frederickson CJ, Koh JY, Bush AI. The neurobiology of zinc in health and disease. Nat Rev Neurosci 2005.

    Google Scholar 

  9. Hamatake M, Iguchi K, Hirano K, Ishida R. Zinc induces mixed types of cell death, necrosis, and apoptosis, in molt-4 cells. J Biochem (Tokyo) 2000;128(6):933–9.

    CAS  Google Scholar 

  10. Lobner D, Canzoniero LM, Manzerra P, Gottron F, Ying H, Knudson M, et al. Zinc-induced neuronal death in cortical neurons. Cell Mol Biol (Noisy-le-grand) 2000;46(4):797–806.

    Google Scholar 

  11. Haugland HP. Handbook of fluorescent probes and research chemicals. Eugene, OR: Molecular Probes; 2001.

    Google Scholar 

  12. Ying H, Gottron F, Chen JW. Assessment of cell viability in primary neuronal cultures. In: Crawley JN, Gerfen CR, Sibley DR, Skolnick P, Wray S, editors. Current protocols in neurosciences. John Wiley & Sons Inc.; 2003.

    Google Scholar 

  13. Stork CJ, Li YV. Measuring cell viability with membrane impermeable zinc fluorescent indicator. J Neurosci Methods 2006;155(2):180–186.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang V. Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Stork, C.J., Li, Y.V. (2011). Exploiting the Liberation of Zn2+ to Measure Cell Viability. In: Stoddart, M. (eds) Mammalian Cell Viability. Methods in Molecular Biology, vol 740. Humana Press. https://doi.org/10.1007/978-1-61779-108-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-108-6_17

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-107-9

  • Online ISBN: 978-1-61779-108-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics