Skip to main content

Atomic Force Microscopy as Nanorobot

  • Protocol
  • First Online:
Atomic Force Microscopy in Biomedical Research

Abstract

Atomic force microscopy (AFM) is a powerful and widely used imaging technique that can visualize single molecules under physiological condition at the nanometer scale. In this chapter, an AFM-based nanorobot for biological studies is introduced. Using the AFM tip as an end effector, the AFM can be modified into a nanorobot that can manipulate biological objects at the single-molecule level. By functionalizing the AFM tip with specific antibodies, the nanorobot is able to identify specific types of receptors on the cell membrane. It is similar to the fluorescent optical microscopy but with higher resolution. By locally updating the AFM image based on interaction force information and objects’ model during nanomanipulation, real-time visual feedback is obtained through the augmented reality interface. The development of the AFM-based nanorobotic system enables us to conduct in situ imaging, sensing, and manipulation simultaneously at the nanometer scale (e.g., protein and DNA levels). The AFM-based nanorobotic system offers several advantages and capabilities for studying structure–function relationships of biological specimens. As a result, many biomedical applications can be achieved by the AFM-based nanorobotic system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Binnig, G., Quate, C. F., and Gerber, C. (1986) Atomic force microscope. Phys Rev Lett. 56, 930–933.

    Article  PubMed  Google Scholar 

  2. Engel, A., and Müller, D.J. (2000) Observing single biomolecules at work with the atomic force microscope. Nature Structural Biology. 7(9), 715–718.

    Article  PubMed  CAS  Google Scholar 

  3. Hörber, J.K.H., and Miles, M.J. (2003) Scanning probe evolution in biology. Science 302, 1002-1005.

    Google Scholar 

  4. Dufrêne, Y.F. (2004) Using nanotechniques to explore microbial surfaces. Nature Reviews Microbiology 2, 451–460.

    Article  PubMed  Google Scholar 

  5. Schaefer, D.M., Reifenberger, R., Patil, A., and Andres, R.P. (1995) Fabrication of two-dimensional arrays of nanometer-size clusters with the atomic force microscope. Appl. Phys. Lett. 66, 1012–1014.

    Article  CAS  Google Scholar 

  6. Junno, T., Deppert, K., Montelius, L., and Samuelson, L. (1995) Controlled manipulation of nanoparticles with an atomic force microscope. Appl. Phys. Lett., 66(26), 3627–3629.

    Article  CAS  Google Scholar 

  7. Hansma, H.G. (1992) Reproducible imaging and dissection of plasmid DNA under liquid with the atomic force microscope. Science 256, 1180–1184.

    Article  PubMed  CAS  Google Scholar 

  8. Vesenka, J., Guthold, M., Tang, C.L., Keller, D., Delaine, E., and Bustamante, C. (1992) Substrate preparation for reliable imaging of DNA molecules with the scanning force microscope. Ultramicroscopy 42–44, 1243–1249.

    Article  PubMed  Google Scholar 

  9. Thalhammer, S., Stark, R.W., Müller, S., Wienberg, J., and Heckl, W.M. (1997) The atomic force microscope as a new microdissecting­ tool for the generation of genetic probes. J Struct Biol 119, 232–237.

    Article  PubMed  CAS  Google Scholar 

  10. Toshiya, O., Hironori, U., Hyonchol, K., and Atsushi, I. (2003) mRNA analysis of single living cells. J Nanobiotech. 1, 2.

    Article  Google Scholar 

  11. Sagvolden, G., Giaever, I., Pettersen, E.O., and Feder. (1999) J Cell adhesion force microscopy. Proc Natl Acad Sci USA 96, 471–476.

    Google Scholar 

  12. Charras, G., and Horton, M. (2002) Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation. Biophys J. 82, 2970–2981.

    Article  PubMed  CAS  Google Scholar 

  13. Oesterhelt, F. (2000) Unfolding pathways of individual bacteriorhodopsins. Science 288, 143–146.

    Article  PubMed  CAS  Google Scholar 

  14. Viani, M.B., Pietrasanta, L.I., Thompson, J.B., Chand, A., Gebeshuber, I.C., Kindt, J.H., Richter, M., Hansma, H.G., and Hansma, P.K. (2000) Probing protein–­protein interactions in real time. Nat Struct Biol. 7, 644–647.

    Article  PubMed  CAS  Google Scholar 

  15. Bustamante, C., Macosko, J., and Wuite, G. (2000) Grabbing the cat by the tail: manipulating molecules one by one. Nat Rev Mol Cell Biol. 1, 130–136.

    Article  PubMed  CAS  Google Scholar 

  16. Hansen, L.T., Kuhle, A., Sorensen, A.H., Bohr, J., and Lindelof, P.E. (1998) A technique for positioning nanoparticles using an atomic force microscope. Nanotechnology 9,337–342.

    Article  CAS  Google Scholar 

  17. Resch, R., Baur, C., Bugacov, A., Koel, B.E., Madhukar, A., Requicha, A.A.G., and Will, P. (1998) Building and manipulating three- dimensional and linked two-­dimensional structures of nanoparticles using scanning force microscopy. Langmuir 14(23), 6613–6616.

    Article  CAS  Google Scholar 

  18. Sitti, M., and Hashimoto, H. (1998) ­Tele-nanorobotics using atomic force microscope. Proc. IEEE Int. Conf. Intelligent Robots and Systems 1739–1746.

    Google Scholar 

  19. Guthold, M., Falvo, M.R., Matthews, W.G., Washburn, S.S., Paulson, and Erie, D.A. (2000) Controlled manipulation of molecular samples with the nanomanipulator. IEEE/ASME Trans. on Mechatronics 5(2), 189–198.

    Google Scholar 

  20. Putman, C.A.J., van der Werf, K.O., de Grooth, B.G., van Hulst, N.F., and Greve, J. (1994) Viscoelasticity of living cells allows high resolution imaging by tapping mode atomic force microscopy. Biophys. J. 67, 1749–1753.

    Article  PubMed  CAS  Google Scholar 

  21. Prater, C.B., Wilson, M.R., Garnaes, J., Massie, J., Eling, V.B., and Hasma, P.K. (1991) Atomic force microscopy of biological samples at low temperature. J. Vac Sci. Tech. B. 9, 989–991.

    Article  Google Scholar 

  22. Butt, H.J., Wolff, E.K., Gould, S.A.C., Northern, B.D., Peterson, C.M., and Hansma, P.K. (1990) Atomic force microscopy of biological samples at low temperature. J. Struct. Biol. 105, 54–61.

    Article  PubMed  CAS  Google Scholar 

  23. Hansma, P.K., Cleveland, J.P., Radmacher, M., Walters, D.A., Hillner, P.E., Bezanilla, M., Fritz, M., Vie, D., and Hansma, H.G. (1994) Tapping mode atomic force microscopy in ­liquids. Appl. Phys. Lett. 64, 1738–1740.

    Article  CAS  Google Scholar 

  24. Baker, A.A., Helbert, W., Sugiyama, J., and Miles, M.J. (2000) New insight into cellulose structure by atomic force microscopy shows the iα crystal phase at near-atomic resolution. Biophys. J. 79, 1139–1145.

    Article  PubMed  CAS  Google Scholar 

  25. Fotiadis, D., Scheuring, S., Müller, S.A., Engel, A., and Müller, D.J. (2002) Imaging and manipulation of biological structures with the AFM. Micron 33, 385–397.

    Article  PubMed  CAS  Google Scholar 

  26. Willemsen, O.H., Snel, M.M.E., van der Werf, K.O., de Grooth, B.G., Greve, J., Hinterdorfer, P., Gruber, H.J., Schindler, H., van Kooyk, Y., and Figdor, C.G. (1998) Simultaneous height and adhesion imaging of antibody-antigen interactions by atomic force microscopy. Biophys. J. 75, 2220–2228.

    Article  PubMed  CAS  Google Scholar 

  27. Ludwig, M., Dettmann, W., and Gaub, H.E. (1997) Afm imaging contrast based on molecular recognition. Biophys. J. 72, 445–448.

    Article  PubMed  CAS  Google Scholar 

  28. Raab, A., Han, W., Badt, D., Smith-Gill, S.J., Lindsay, S.M., Schindler, H., and Hinterdorfer, P. (1999) Antibody recognition imaging by force microscopy. Nat. Biotechnol. 17, 902–905.

    CAS  Google Scholar 

  29. Chen, H., Xi, N., and Li, G. (2006) CAD-guided automated nanoassembly using atomic force microscopy-based nanorobotics. IEEE Transactions on Automation Science and Engineering 3(3), 208–217.

    Article  Google Scholar 

  30. Li, G., Xi, N., Yu, M., and Fung, W. K. (2003) Augmented reality system for real-time ­nanomanipulations. Proc. IEEE Int. Conf. Nanotechnology 2, 64–67.

    Google Scholar 

  31. Li, G., Xi, N., and Yu, M. (2004) Development of augmented reality system for afm based nanomanipulations. IEEE/ASME Trans. on Mechatronics 9, 358–365.

    Article  Google Scholar 

  32. Zhang, J., Xi, N., Liu, Li., Chen, H., Lai, K. W. C., and Li, G. (2008) Atomic force yields a master nanomanipulator. IEEE Nano­technology Magazine 2(2), 13–17.

    Article  Google Scholar 

  33. Li, G., Xi, N., Chen, H., Pomeroy, C., and Prokos, M. (2005) “Videolized” atomic force microscopy for interactive nanomanipulation and Nanoassembly. IEEE Transactions on Nanotechnology 4, 605–615.

    Article  Google Scholar 

  34. Liu, L., Luo, Y., Xi, N., Wang, Y., Zhang, J., and Li, G. (2008) Sensor referenced real-time videolization of atomic force microscopy for nanomanipulations. IEEE/ASME Transactions on Mechatronics 13(1), 76–85.

    Article  Google Scholar 

  35. Li, G., Xi, N., Wang, Y.C., Yu, M., and Fung, W.K. (2004) Planning and control of 3-D nano-Manipulation. Acta Mechanica Sinica. 20(2), 117–124.

    Article  CAS  Google Scholar 

  36. Li, G., Xi, N., and Yu, M. (2004) Augmented Reality Enhanced “Top-Down” nanomanufacturing. Proc. of IEEE Conference on Nanotechnology 352–354.

    Google Scholar 

  37. Li, G., Xi, N., and Yu, M. (2004) Calibration of AFM based nanomanipulation system. Proc. of IEEE International Conference on Robotics and Automation 422–427.

    Google Scholar 

  38. Li, G., Xi, N., Chen, H., Saeed, A., and Yu, M. (2004) Assembly of nanostructure using AFM based nanomanipulation system. Proc. of IEEE International Conference on Robotics and Automation 428–433.

    Google Scholar 

  39. Zhang, J., Xi, N., Li, G., Chan, H., and Wejinya, U.C. (2006) Adaptable end effector for atomic force microscopy based nanomanipulation. IEEE Transactions on Nano­technology 5(6), 628–642.

    Article  Google Scholar 

  40. Li, G., Xi, N., Chen, H., Saeed, A., Li, W.J., Fung, C.K.M., Chan, R.H.M., Zhang, M., and Tarn, T.J. (2004) Nano-assembly of DNA based electronic devices using atomic force microscopy. Proc. of IEEE/RSJ International Conference on Intelligent Robotics and Systems 583–588.

    Google Scholar 

  41. Li, G., Xi, N., Chen, H.P., Saeed, A., Zhang, J., Li, W.J., Fung, C.K.M., Chan, R.H.M., Zhang, M., and Tarn, T.J. (2004) Experimental studies of DNA electrical properties using AFM based nano-manipulator. Proc. of IEEE Conference on Nanotechnology 308–310.

    Google Scholar 

  42. Li, G., Xi, N., and Wang, D.H. (2005) Investigation of angiotensin II type 1 receptor by atomic force microscopy with functionalized probe. Nanomedicine: Nanotechnology, Biology, and Medicine 1(4), 302–312.

    Article  Google Scholar 

  43. Li, G., Xi, N., and Wang, D.H. (2006) Probing membrane proteins using atomic force microscopy. J. Cellular Biochem. 97, 1191–1197.

    Article  CAS  Google Scholar 

  44. Li, G., Xi, N., and Wang, D.H. (2005) In situ sensing and manipulation of molecules in biological samples using a nanorobotic system. Nanomedicine: Nanotechnology, Biology, and Medicine 1(1), 31–40.

    Article  Google Scholar 

  45. Fung, C.K.M., Kristina, S., Lai, K.W.C., Yang, R., Panyard, D., Zhang, J., Xi, N., and Sinha, A. A. (2010) Investigation of human keratinocyte cell adhesion using atomic force microscopy (AFM). Nanomedicine: Nanotechnology, Biology, and Medicine, 6(1), 191–200.

    Google Scholar 

  46. Zhang, J., Xi, N., and Lai, K. W. C. (2007) Fabrication and testing of a nanoinfrared detector using a single carbon nanotube (CNT). SPIE Newsroom. (online at: http://spie.org/x8489.xml).

  47. Zhang, J., Xi, N., Chen, H. Z., Lai, K. W. C., and Li, G. (2008) Photovoltaic effect in single carbon nanotube based Schottky diodes. International Journal of Nanoparticles 1(2), 108–118.

    Article  CAS  Google Scholar 

  48. Zhang, J., Xi, N., Chen, H. Z., Lai, K. W. C., and Li, G. (2009) Design, manufacturing and testing of single carbon nanotube based infrared sensors. IEEE Transactions on Nanotechnology 8(2), 245–251.

    Article  Google Scholar 

  49. Chen, H. Z., Xi, N., Lai, K. W. C., and Zhang, J. (2008) Infrared detection using carbon nanotube field effect transistor. Proc. of IEEE Conference on Nanotechnology 88–91.

    Google Scholar 

  50. Fung, C. K. M., Xi, N., Shanker, B., and Lai, K. W. C. (2009) Nanoresonant signal booster for carbon nanotube based infrared detectors. Nanotechnology 20, 185201.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research work is partially supported by NSF Grants IIS-0713346 and DMI-0500372, and ONR Grants N00014-04-1-0799 and N00014-07-1-0935.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Xi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Xi, N. et al. (2011). Atomic Force Microscopy as Nanorobot. In: Braga, P., Ricci, D. (eds) Atomic Force Microscopy in Biomedical Research. Methods in Molecular Biology, vol 736. Humana Press. https://doi.org/10.1007/978-1-61779-105-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-105-5_29

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-104-8

  • Online ISBN: 978-1-61779-105-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics