Skip to main content

Mammalian Artificial Chromosomes and Clinical Applications for Genetic Modification of Stem Cells: An Overview

  • Protocol
  • First Online:
Mammalian Chromosome Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 738))

Abstract

Modifying multipotent, self-renewing human stem cells with mammalian artificial chromosomes (MACs), present a promising clinical strategy for numerous diseases, especially ex vivo cell therapies that can benefit from constitutive or overexpression of therapeutic gene(s). MACs are nonintegrating, autonomously replicating, with the capacity to carry large cDNA or genomic sequences, which in turn enable potentially prolonged, safe, and regulated therapeutic transgene expression, and render MACs as attractive genetic vectors for “gene replacement” or for controlling differentiation pathways in progenitor cells. The status quo is that the most versatile target cell would be one that was pluripotent and self-renewing to address multiple disease target cell types, thus making multilineage stem cells, such as adult derived early progenitor cells and embryonic stem cells, as attractive universal host cells. We will describe the progress of MAC technologies, the subsequent modifications of stem cells, and discuss the establishment of MAC platform stem cell lines to facilitate proof-of-principle studies and preclinical development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ascenzioni, F., Donini, P. and Lipps, H.J. (1997). Mammalian artificial chromosomes – vectors for somatic gene therapy. Cancer Lett. 118, 135–142.

    PubMed  CAS  Google Scholar 

  2. Basu, J. and Willard, H.F. (2006). Human artificial chromosomes: potential applications and clinical considerations. Pediatr. Clin. North Am. 53, 843–853, viii-843–853, viii.

    Google Scholar 

  3. Bridger, J.M. (2004). Mammalian artificial chromosomes: modern day feats of engineering – Isambard Kingdom Brunel style. Cytogenet. Genome Res. 107, 5–8.

    PubMed  CAS  Google Scholar 

  4. Cooke, H. (2001). Mammalian artificial chromosomes as vectors: progress and prospects. Cloning Stem Cells 3, 243–249.

    PubMed  CAS  Google Scholar 

  5. Larin, Z. and Mejia, J.E. (2002). Advances in human artificial chromosome technology. Trends Genet. 18, 313–319.

    PubMed  CAS  Google Scholar 

  6. Lewis, M. (2001). Human artificial chromosomes: emerging from concept to reality in biomedicine. Clin. Genet. 59, 15–16.

    PubMed  Google Scholar 

  7. Lim, H.N. and Farr, C.J. (2004). Chromosome-based vectors for Mammalian cells: an overview. Methods Mol. Biol. 240, 167–186.

    PubMed  CAS  Google Scholar 

  8. Monaco, Z.L. and Moralli, D. (2006). Progress in artificial chromosome technology. Biochem. Soc. Trans. 34, 324–327.

    PubMed  CAS  Google Scholar 

  9. Ren, X., Tahimic, C.G.T., Katoh, M., Kurimasa, A., Inoue, T. and Oshimura, M. (2006). Human artificial chromosome vectors meet stem cells: new prospects for gene delivery. Stem Cell Rev 2, 43–50.

    PubMed  CAS  Google Scholar 

  10. Ehrhardt, A., Haase, R., Schepers, A., Deutsch, M.J., Lipps, H.J. and Baiker, A. (2008). Episomal vectors for gene therapy. Curr Gene Ther 8, 147–161.

    PubMed  CAS  Google Scholar 

  11. Macnab, S. and Whitehouse, A. (2009). Progress and prospects: human artificial chromosomes. Gene Ther. 16, 1180–1188.

    PubMed  CAS  Google Scholar 

  12. Duncan, A. and Hadlaczky, G. (2007). Chromosomal engineering. Curr. Opin. Biotechnol. 18, 420–424.

    PubMed  CAS  Google Scholar 

  13. Hadlaczky, G. (2001). Satellite DNA-based artificial chromosomes for use in gene therapy. Curr. Opin. Mol. Ther. 3, 125–132.

    PubMed  CAS  Google Scholar 

  14. Grimes, B.R. and Monaco, Z.L. (2005). Artificial and engineered chromosomes: developments and prospects for gene therapy. Chromosoma 114, 230–241.

    PubMed  CAS  Google Scholar 

  15. Basu, J. and Willard, H.F. (2005). Artificial and engineered chromosomes: nonintegrating vectors for gene therapy. Trends Mol Med 11, 251–258.

    PubMed  CAS  Google Scholar 

  16. Brown, W.R., Mee, P.J. and Hong Shen, M. (2000). Artificial chromosomes: ideal vectors? Trends Biotechnol. 18, 218–223.

    PubMed  CAS  Google Scholar 

  17. Lipps, H.J., Jenke, A.C., Nehlsen, K., Scinteie, M.F., Stehle, I.M. and Bode, J. (2003). Chromosome-based vectors for gene therapy. Gene 304, 23–33.

    PubMed  CAS  Google Scholar 

  18. Grimes, B.R., Warburton, P.E. and Farr, C.J. (2002). Chromosome engineering: prospects for gene therapy. Gene Ther. 9, 713–718.

    PubMed  CAS  Google Scholar 

  19. Harrington, J.J., Van Bokkelen, G., Mays, R.W., Gustashaw, K. and Willard, H.F. (1997). Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat. Genet. 15, 345–355.

    PubMed  CAS  Google Scholar 

  20. Ikeno, M., Grimes, B., Okazaki, T., Nakano, M., Saitoh, K., Hoshino, H., McGill, N.I., Cooke, H. and Masumoto, H. (1998). Construction of YAC-based mammalian artificial chromosomes. Nat. Biotechnol. 16, 431–439.

    PubMed  CAS  Google Scholar 

  21. Henning, K.A., Novotny, E.A., Compton, S.T., Guan, X.Y., Liu, P.P. and Ashlock, M.A. (1999). Human artificial chromosomes generated by modification of a yeast artificial chromosome containing both human alpha satellite and single-copy DNA sequences. Proc Natl Acad Sci USA 96, 592–597.

    PubMed  CAS  Google Scholar 

  22. de las Heras, J.I., D’Aiuto, L. and Cooke, H. (2004). Mammalian artificial chromosome formation in human cells after lipofection of a PAC precursor. Methods Mol. Biol. 240, 187–206.

    Google Scholar 

  23. Basu, J., Willard, H.F. and Stromberg, G. (2007). Human artificial chromosome assembly by transposon-based retrofitting of genomic BACs with synthetic alpha-satellite arrays. Curr Protoc Hum Genet Chapter 5, Unit 5.18-Unit 5.18.

    Google Scholar 

  24. Nakashima, H., Nakano, M., Ohnishi, R., Hiraoka, Y., Kaneda, Y., Sugino, A. and Masumoto, H. (2005). Assembly of additional heterochromatin distinct from centromerekinetochore chromatin is required for de novo formation of human artificial chromosome. J. Cell. Sci. 118, 5885–5898.

    PubMed  CAS  Google Scholar 

  25. Kaname, T., McGuigan, A., Georghiou, A., Yurov, Y., Osoegawa, K., De Jong, P.J., Ioannou, P. and Huxley, C. (2005). Alphoid DNA from different chromosomes forms de novo minichromosomes with high efficiency. Chromosome Res. 13, 411–422.

    PubMed  CAS  Google Scholar 

  26. Basu, J., Compitello, G., Stromberg, G., Willard, H.F. and Van Bokkelen, G. (2005). Efficient assembly of de novo human artificial chromosomes from large genomic loci. BMC. Biotechnol 5, 21–21.

    PubMed  Google Scholar 

  27. Grimes, B.R., Rhoades, A.A. and Willard, H.F. (2002). Alpha-satellite DNA and vector composition influence rates of human artificial chromosome formation. Mol. Ther. 5, 798–805.

    PubMed  CAS  Google Scholar 

  28. Ikeno, M., Suzuki, N., Hasegawa, Y. and Okazaki, T. (2009). Manipulating transgenes using a chromosome vector. Nucleic Acids Res. 37, e44–e44.

    PubMed  Google Scholar 

  29. Kouprina, N., Ebersole, T., Koriabine, M., Pak, E., Rogozin, I.B., Katoh, M., Oshimura, M., Ogi, K., Peredelchuk, M., Solomon, G., Brown, W., Barrett, J.C. and Larionov, V. (2003). Cloning of human centromeres by transformation-associated recombination in yeast and generation of functional human artificial chromosomes. Nucleic Acids Res. 31, 922–934.

    PubMed  CAS  Google Scholar 

  30. Suzuki, N., Nishii, K., Okazaki, T. and Ikeno, M. (2006). Human artificial chromosomes constructed using the bottom-up strategy are stably maintained in mitosis and efficiently transmissible to progeny mice. J. Biol. Chem 281, 26615–26623.

    PubMed  CAS  Google Scholar 

  31. Carine, K., Solus, J., Waltzer, E., Manch-Citron, J., Hamkalo, B.A. and Scheffler, I.E. (1986). Chinese hamster cells with a minichromosome containing the centromere region of human chromosome 1. Somat. Cell Mol. Genet. 12, 479–491.

    PubMed  CAS  Google Scholar 

  32. Farr, C.J., Bayne, R.A., Kipling, D., Mills, W., Critcher, R. and Cooke, H.J. (1995). Generation of a human X-derived minichromosome using telomere-associated chromosome fragmentation. EMBO J. 14, 5444–5454.

    PubMed  CAS  Google Scholar 

  33. Heller, R., Brown, K.E., Burgtorf, C. and Brown, W.R. (1996). Mini-chromosomes derived from the human Y chromosome by telomere directed chromosome breakage. Proc Natl Acad Sci USA 93, 7125–7130.

    PubMed  CAS  Google Scholar 

  34. Kuroiwa, Y., Tomizuka, K., Shinohara, T., Kazuki, Y., Yoshida, H., Ohguma, A., Yamamoto, T., Tanaka, S., Oshimura, M. and Ishida, I. (2000). Manipulation of human minichromosomes to carry greater than megabase-sized chromosome inserts. Nat. Biotechnol 18, 1086–1090.

    PubMed  CAS  Google Scholar 

  35. Au, H.C., Mascarello, J.T. and Scheffler, I.E. (1999). Targeted integration of a dominant neo(R) marker into a 2- to 3-Mb human minichromosome and transfer between cells. Cytogenet. Cell Genet. 86, 194–203.

    PubMed  CAS  Google Scholar 

  36. Mills, W., Critcher, R., Lee, C. and Farr, C.J. (1999). Generation of an approximately 2.4 Mb human X centromere-based minichromosome by targeted telomere-associated chromosome fragmentation in DT40. Hum. Mol. Genet. 8, 751–761.

    Google Scholar 

  37. Shen, M.H., Mee, P.J., Nichols, J., Yang, J., Brook, F., Gardner, R.L., Smith, A.G. and Brown, W.R. (2000). A structurally defined mini-chromosome vector for the mouse germ line. Curr. Biol. 10, 31–34.

    PubMed  CAS  Google Scholar 

  38. Choo, K.H., Saffery, R., Wong, L.H., Irvine, D.V., Bateman, M.A., Griffiths, B., Cutts, S.M., Cancilla, M.R., Cendron, A.C. and Stafford, A.J. (2001). Construction of neocentromere-based human minichromosomes by telomere-associated chromosomal truncation. Proc Natl Acad Sci USA 98, 5705–5710.

    PubMed  Google Scholar 

  39. Voet, T., Vermeesch, J., Carens, A., Durr, J., Labaere, C., Duhamel, H., David, G. and Marynen, P. (2001). Efficient male and female germline transmission of a human chromosomal vector in mice. Genome Res. 11, 124–136.

    PubMed  CAS  Google Scholar 

  40. Wong, L.H., Saffery, R. and Choo, K.H.A. (2002). Construction of neocentromerebased human minichromosomes for gene delivery and centromere studies. Gene Ther. 9, 724–726.

    PubMed  CAS  Google Scholar 

  41. Auriche, C., Donini, P. and Ascenzioni, F. (2001). Molecular and cytological analysis of a 5.5 Mb minichromosome. EMBO Rep. 2, 102–107.

    Google Scholar 

  42. Katoh, M., Ayabe, F., Norikane, S., Okada, T., Masumoto, H., Horike, S., Shirayoshi, Y. and Oshimura, M. (2004). Construction of a novel human artificial chromosome vector for gene delivery. Biochem. Biophys. Res. Commun. 321, 280–290.

    PubMed  CAS  Google Scholar 

  43. Hadlaczky, G., Praznovszky, T., Cserpan, I., Kereso, J., Peterfy, M., Kelemen, I., Atalay, E., Szeles, A., Szelei, J. and Tubak, V. (1991). Centromere formation in mouse cells cotransformed with human DNA and a dominant marker gene. Proc. Natl. Acad. Sci. U.S.A 88, 8106–8110.

    PubMed  CAS  Google Scholar 

  44. Praznovszky, T., Kereső, J., Tubak, V., Cserpán, I., Fátyol, K. and Hadlaczky, G. (1991). De novo chromosome formation in rodent cells. Proc Natl Acad Sci USA 88, 11042–11046.

    PubMed  CAS  Google Scholar 

  45. Kereso, J., Praznovszky, T., Cserpan, I., Fodor, K., Katona, R., Csonka, E., Fatyol, K., Hollo, G., Szeles, A., Ross, A.R., Sumner, A.T., Szalay, A.A. and Hadlaczky, G. (1996). De novo chromosome formations by large-scale amplification of the centromeric region of mouse chromosomes. Chromosome Res. 4, 226–239.

    PubMed  CAS  Google Scholar 

  46. Csonka, E., Cserpan, I., Fodor, K., Hollo, G., Katona, R., Kereso, J., Praznovszky, T., Szakal, B., Telenius, A., deJong, G., Udvardy, A. and Hadlaczky, G. (2000). Novel generation of human satellite DNA-based artificial chromosomes in mammalian cells. J. Cell Sci 113 (Pt 18), 3207–3216.

    PubMed  CAS  Google Scholar 

  47. Hollo, G., Kereso, J., Praznovszky, T., Cserpan, I., Fodor, K., Katona, R., Csonka, E., Fatyol, K., Szeles, A., Szalay, A.A. and Hadlaczky, G. (1996). Evidence for a megareplicon covering megabases of centromeric chromosome segments. Chromosome Res. 4, 240–247.

    PubMed  CAS  Google Scholar 

  48. Lindenbaum, M., Perkins, E., Csonka, E., Fleming, E., Garcia, L., Greene, A., Gung, L., Hadlaczky, G., Lee, E., Leung, J., MacDonald, N., Maxwell, A., Mills, K., Monteith, D., Perez, C.F., Shellard, J., Stewart, S., Stodola, T., Vandenborre, D., Vanderbyl, S. and Ledebur, H.C. (2004). A mammalian artificial chromosome engineering system (ACE System) applicable to biopharmaceutical protein production, transgenesis and gene-based cell therapy. Nucleic Acids Res. 32, e172–e172.

    PubMed  Google Scholar 

  49. Perez, C.F., Vanderbyl, S.L., Mills, K. and Ledebur Jr, H.C. (2004). The ACE System: A versatile chromosome engineering technology with applications for genebased cell therapy. Bioprocessing 3, 61–68.

    Google Scholar 

  50. Grimes, B.R., Schindelhauer, D., McGill, N.I., Ross, A., Ebersole, T.A. and Cooke, H.J. (2001). Stable gene expression from a mammalian artificial chromosome. EMBO Rep. 2, 910–914.

    PubMed  CAS  Google Scholar 

  51. Breman, A.M., Steiner, C.M., Slee, R.B. and Grimes, B.R. (2008). Input DNA ratio determines copy number of the 33 kb Factor IX gene on de novo human artificial chromosomes. Mol. Ther. 16, 315–323.

    PubMed  CAS  Google Scholar 

  52. Grimes, B.R., Babcock, J., Rudd, M.K., Chadwick, B. and Willard, H.F. (2004). Assembly and characterization of heterochromatin and euchromatin on human artificial chromosomes. Genome Biol. 5, R89–R89.

    PubMed  Google Scholar 

  53. Rudd, M.K., Mays, R.W., Schwartz, S. and Willard, H.F. (2003). Human artificial chromosomes with alpha satellite-based de novo centromeres show increased frequency of nondisjunction and anaphase lag. Mol. Cell. Biol. 23, 7689–7697.

    PubMed  CAS  Google Scholar 

  54. Higgins, A.W., Gustashaw, K.M. and Willard, H.F. (2005). Engineered human dicentric chromosomes show centromere plasticity. Chromosome Res. 13, 745–762.

    PubMed  CAS  Google Scholar 

  55. Oshimura, M. and Katoh, M. (2008). Transfer of human artificial chromosome vectors into stem cells. Reprod. Biomed. Online 16, 57–69.

    PubMed  Google Scholar 

  56. Ayabe, F., Katoh, M., Inoue, T., Kouprina, N., Larionov, V. and Oshimura, M. (2005). A novel expression system for genomic DNA loci using a human artificial chromosome vector with transformation-associated recombination cloning. J. Hum. Genet 50, 592–599.

    PubMed  CAS  Google Scholar 

  57. Kawahara, M., Inoue, T., Ren, X., Sogo, T., Yamada, H., Katoh, M., Ueda, H., Oshimura, M. and Nagamune, T. (2007). Antigen-mediated growth control of hybridoma cells via a human artificial chromosome. Biochim. Biophys. Acta 1770, 206–212.

    PubMed  CAS  Google Scholar 

  58. Kakeda, M., Hiratsuka, M., Nagata, K., Kuroiwa, Y., Kakitani, M., Katoh, M., Oshimura, M. and Tomizuka, K. (2005). Human artificial chromosome (HAC) vector provides long-term therapeutic transgene expression in normal human primary fibroblasts. Gene Ther. 12, 852–856.

    PubMed  CAS  Google Scholar 

  59. Otsuki, A., Tahimic, C.G., Tomimatsu, N., Katoh, M., Chen, D.J., Kurimasa, A. and Oshimura, M. (2005). Construction of a novel expression system on a human artificial chromosome. Biochem. Biophys. Res. Commun 329, 1018–1025.

    PubMed  CAS  Google Scholar 

  60. Suda, T., Katoh, M., Hiratsuka, M., Takiguchi, M., Kazuki, Y., Inoue, T. and Oshimura, M. (2006). Heat-regulated production and secretion of insulin from a human artificial chromosome vector. Biochem. Biophys. Res. Commun. 340, 1053–1061.

    PubMed  CAS  Google Scholar 

  61. Messina, G., Cossu, G., Oshimura, M., Hoshiya, H., Kazuki, Y., Abe, S., Takiguchi, M., Kajitani, N., Watanabe, Y., Yoshino, T., Shirayoshi, Y. and Higaki, K. (2009). A highly stable and nonintegrated human artificial chromosome (HAC) containing the 2.4 Mb entire human dystrophin gene. Mol. Ther. 17, 309–317.

    Google Scholar 

  62. Yamada, H., Li, Y.C., Nishikawa, M., Oshimura, M. and Inoue, T. (2008). Introduction of a CD40L genomic fragment via a human artificial chromosome vector permits cell-type-specific gene expression and induces immunoglobulin secretion. J. Hum. Genet. 53, 447–453.

    PubMed  CAS  Google Scholar 

  63. Inoue, K., Kajitani, N., Yoshino, T., Shirayoshi, Y., Ogura, A., Shinohara, T., Barrett, J.C., Oshimura, M., Kazuki, Y., Hoshiya, H., Kai, Y., Abe, S., Takiguchi, M., Osaki, M., Kawazoe, S., Katoh, M. and Kanatsu-Shinohara, M. (2008). Correction of a genetic defect in multipotent germline stem cells using a human artificial chromosome. Gene Ther. 15, 617–624.

    PubMed  Google Scholar 

  64. Oshimura, M., Tomizuka, K., Shitara, S., Kakeda, M., Nagata, K., Hiratsuka, M., Sano, A., Osawa, K., Okazaki, A., Katoh, M. and Kazuki, Y. (2008). Telomerasemediated life-span extension of human primary fibroblasts by human artificial chromosome (HAC) vector. Biochem. Biophys. Res. Commun. 369, 807–811.

    PubMed  Google Scholar 

  65. Sands, V.E. (1969). Short arm enlargement in acrocentric chromosomes. Am. J. Hum. Genet. 21, 293–304.

    PubMed  CAS  Google Scholar 

  66. Warburton, D., Atwood, K.C. and Henderson, A.S. (1976). Variation in the number of genes for rRNA among human acrocentric chromosomes: correlation with frequency of satellite association. Cytogenet. Cell Genet. 17, 221–230.

    PubMed  CAS  Google Scholar 

  67. Verma, R.S., Dosik, H. and Lubs, H.A. (1977). Size variation polymorphisms of the short arm of human acrocentric chromosomes determined by R-banding by fluorescence using acridine orange (RFA). Hum. Genet. 38, 231–234.

    PubMed  CAS  Google Scholar 

  68. Sofuni, T., Tanabe, K. and Awa, A.A. (1980). Chromosome heteromorphisms in the Japanese. II. Nucleolus organizer regions of variant chromosomes in D and G groups. Hum. Genet. 55, 265–270.

    Google Scholar 

  69. Trask, B., van den Engh, G., Mayall, B. and Gray, J.W. (1989). Chromosome heteromorphism quantified by high-resolution bivariate flow karyotyping. Am. J. Hum. Genet. 45, 739–752.

    PubMed  CAS  Google Scholar 

  70. Trask, B., van den Engh, G. and Gray, J.W. (1989). Inheritance of chromosome heteromorphisms analyzed by high-resolution bivariate flow karyotyping. Am. J. Hum. Genet. 45, 753–760.

    PubMed  CAS  Google Scholar 

  71. Stergianou, K., Gould, C.P., Waters, J.J. and Hultén, M.A. (1993). A DA/DAPI positive human 14p heteromorphism defined by fluorescence in-situ hybridisation using chromosome 15-specific probes D15Z1 (satellite III) and p-TRA-25 (alphoid). Hereditas 119, 105–110.

    PubMed  CAS  Google Scholar 

  72. Friedrich, U., Caprani, M., Niebuhr, E., Therkelsen, A.J. and Jørgensen, A.L. (1996). Extreme variant of the short arm of chromosome 15. Hum. Genet. 97, 710–713.

    Google Scholar 

  73. Conte, R.A., Kleyman, S.M., Laundon, C. and Verma, R.S. (1997). Characterization of two extreme variants involving the short arm of chromosome 22: are they identical? Ann. Genet. 40, 145–149.

    PubMed  CAS  Google Scholar 

  74. Cooper, H.L. and Hirschhorn, K. (1962). Enlarged satellites as a familial chromosome marker. Am. J. Hum. Genet. 14, 107–124.

    PubMed  CAS  Google Scholar 

  75. Therkelsen, A.J. (1964). Enlarged short arm of a small acrocentric chromosome in grandfather, mother and child, the latter with Down’s syndrome. Cytogenetics 10, 441–451.

    PubMed  CAS  Google Scholar 

  76. Yoder, F.E., Bias, W.B., Borgaonkar, D.S., Bahr, G.F., Yoder, I.I., Yoder, O.C. and Golomb, H.M. (1974). Cytogenetic and linkage studies of a familial 15pplus variant. Am. J. Hum. Genet. 26, 535–548.

    PubMed  CAS  Google Scholar 

  77. Bernstein, R., Dawson, B. and Griffiths, J. (1981). Human inherited marker chromosome 22 short-arm enlargement: investigation of rDNA gene multiplicity, Agband size, and acrocentric association. Hum. Genet. 58, 135–139.

    PubMed  CAS  Google Scholar 

  78. Schmid, M., Nanda, I., Steinlein, C. and Epplen, J.T. (1994). Amplification of (GACA)n simple repeats in an exceptional 14p+ marker chromosome. Hum. Genet. 93, 375–382.

    PubMed  CAS  Google Scholar 

  79. Mukerjee, D. and Burdette, W.J. (1966). A familial minute isochromosome. Am. J. Hum. Genet. 18, 62–69.

    PubMed  CAS  Google Scholar 

  80. Howard-Peebles, P.N. (1979). A familial bisatellited extra metacentric microchromosome in man. J. Hered. 70, 347–348.

    PubMed  CAS  Google Scholar 

  81. Blennow, E., Bui, T.H., Kristoffersson, U., Vujic, M., Annerén, G., Holmberg, E. and Nordenskjöld, M. (1994). Swedish survey on extra structurally abnormal chromosomes in 39 105 consecutive prenatal diagnoses: prevalence and characterization by fluorescence in situ hybridization. Prenat. Diagn. 14, 1019–1028.

    PubMed  CAS  Google Scholar 

  82. Brondum-Nielsen, K. and Mikkelsen, M. (1995). A 10-year survey, 1980-1990, of prenatally diagnosed small supernumerary marker chromosomes, identified by FISH analysis. Outcome and follow-up of 14 cases diagnosed in a series of 12,699 prenatal samples. Prenat. Diagn. 15, 615–619.

    Google Scholar 

  83. Crolla, J.A., Howard, P., Mitchell, C., Long, F.L. and Dennis, N.R. (1997). A molecular and FISH approach to determining karyotype and phenotype correlations in six patients with supernumerary marker(22) chromosomes. Am. J. Med. Genet. 72, 440–447.

    PubMed  CAS  Google Scholar 

  84. Adhvaryu, S.G., Peters-Brown, T., Livingston, E. and Qumsiyeh, M.B. (1998). Familial supernumerary marker chromosome evolution through three generations. Prenat. Diagn. 18, 178–181.

    PubMed  CAS  Google Scholar 

  85. Hadlaczky, G., Bujdosó, G., Koltai, E., Schwanitz, G. and Csonka, E. (2002). A natural equivalent to human satellite DNA-based artificial chromosome persists over 140 years, in a three-generation family. European Journal of Human Genetics 10 (Supplement), 143–143.

    Google Scholar 

  86. Kennard, M.L., Goosney, D.L., Monteith, D., Zhang, L., Moffat, M., Fischer, D. and Mott, J. (2009). The generation of stable, high MAb expressing CHO cell lines based on the artificial chromosome expression (ACE) technology. Biotechnol. Bioeng. 104, 540–553.

    PubMed  CAS  Google Scholar 

  87. Kennard, M.L., Goosney, D.L., Monteith, D., Roe, S., Fischer, D. and Mott, J. (2009). Auditioning of CHO host cell lines using the artificial chromosome expression (ACE) technology. Biotechnol. Bioeng. 104, 526–539.

    PubMed  CAS  Google Scholar 

  88. Katona, R.L., Sinkó, I., Holló, G., Szucs, K.S., Praznovszky, T., Kereső, J., Csonka, E., Fodor, K., Cserpán, I., Szakál, B., Blazsó, P., Udvardy, A. and Hadlaczky, G. (2008). A combined artificial chromosome-stem cell therapy method in a model experiment aimed at the treatment of Krabbe’s disease in the Twitcher mouse. Cell. Mol. Life Sci. 65, 3830–3838.

    PubMed  CAS  Google Scholar 

  89. Adriaansen, J., Vervoordeldonk, M.J., Vanderbyl, S., de Jong, G. and Tak, P.P. (2006). A novel approach for gene therapy: engraftment of fibroblasts containing the artificial chromosome expression system at the site of inflammation. J Gene Med 8, 63–71.

    PubMed  CAS  Google Scholar 

  90. Schor, S.L., Johnson, R.T. and Mullinger, A.M. (1975). Perturbation of mammalian cell division. II. Studies on the isolation and characterization of human mini segregant cells. J. Cell. Sci. 19, 281–303.

    Google Scholar 

  91. Fournier, R.E. and Ruddle, F.H. (1977). Microcell-mediated transfer of murine chromosomes into mouse, Chinese hamster, and human somatic cells. Proc Natl Acad Sci USA 74, 319–323.

    PubMed  CAS  Google Scholar 

  92. Meaburn, K.J., Parris, C.N. and Bridger, J.M. (2005). The manipulation of chromosomes by mankind: the uses of microcell-mediated chromosome transfer. Chromosoma 114, 263–274.

    PubMed  Google Scholar 

  93. Doherty, A.M.O. and Fisher, E.M.C. (2003). Microcell-mediated chromosome transfer (MMCT): small cells with huge potential. Mamm. Genome 14, 583–592.

    PubMed  Google Scholar 

  94. Yamada, H., Kunisato, A., Kawahara, M., Tahimic, C.G., Ren, X., Ueda, H., Nagamune, T., Katoh, M., Inoue, T., Nishikawa, M. and Oshimura, M. (2006). Exogenous gene expression and growth regulation of hematopoietic cells via a novel human artificial chromosome. J. Hum.Genet 51, 147–150.

    PubMed  CAS  Google Scholar 

  95. de Jong, G., Telenius, A.H., Telenius, H., Perez, C.F., Drayer, J.I. and Hadlaczky, G. (1999). Mammalian artificial chromosome pilot production facility: large-scale isolation of functional satellite DNA-based artificial chromosomes. Cytometry 35, 129–133.

    Google Scholar 

  96. Co, D.O., Borowski, A.H., Leung, J.D., van der Kaa, J., Hengst, S., Platenburg, G.J., Pieper, F.R., Perez, C.F., Jirik, F.R. and Drayer, J.I. (2000). Generation of transgenic mice and germline transmission of a mammalian artificial chromosome introduced into embryos by pronuclear microinjection. Chromosome Res. 8, 183–191.

    PubMed  CAS  Google Scholar 

  97. Monteith, D.P., Leung, J.D., Borowski, A.H., Co, D.O., Praznovszky, T., Jirik, F.R., Hadlaczky, G. and Perez, C.F. (2004). Pronuclear microinjection of purified artificial chromosomes for generation of transgenic mice: pick-and-inject technique. Methods Mol. Biol. 240, 227–242.

    PubMed  CAS  Google Scholar 

  98. Vanderbyl, S., MacDonald, G.N., Sidhu, S., Gung, L., Telenius, A., Perez, C. and Perkins, E. (2004). Transfer and stable transgene expression of a mammalian artificial chromosome into bone marrow-derived human mesenchymal stem cells. Stem Cells 22, 324–333.

    PubMed  CAS  Google Scholar 

  99. Vanderbyl, S.L., Sullenbarger, B., White, N., Perez, C.F., MacDonald, G.N., Stodola, T., Bunnell, B.A., Ledebur, H.C. and Lasky, L.C. (2005). Transgene expression after stable transfer of a mammalian artificial chromosome into human hematopoietic cells. Exp. Hematol. 33, 1470–1476.

    PubMed  CAS  Google Scholar 

  100. de Jong, G., Telenius, A., Vanderbyl, S., Meitz, A. and Drayer, J. (2001). Efficient in-vitro transfer of a 60-Mb mammalian artificial chromosome into murine and hamster cells using cationic lipids and dendrimers. Chromosome Res. 9, 475–485.

    PubMed  Google Scholar 

  101. Robl, J.M., Kasinathan, P., Sullivan, E., Kuroiwa, Y., Tomizuka, K. and Ishida, I. (2003). Artificial chromosome vectors and expression of complex proteins in transgenic animals. Theriogenology 59, 107–113.

    PubMed  CAS  Google Scholar 

  102. Kuroiwa, Y., Kasinathan, P., Choi, Y.J., Naeem, R., Tomizuka, K., Sullivan, E.J., Knott, J.G., Duteau, A., Goldsby, R.A., Osborne, B.A., Ishida, I. and Robl, J.M. (2002). Cloned transchromosomic calves producing human immunoglobulin. Nat. Biotechnol 20, 889–894.

    PubMed  CAS  Google Scholar 

  103. Kazuki, Y., Shinohara, T., Tomizuka, K., Katoh, M., Ohguma, A., Ishida, I. and Oshimura, M. (2001). Germline transmission of a transferred human chromosome 21 fragment in transchromosomal mice. J. Hum. Genet. 46, 600–603.

    PubMed  CAS  Google Scholar 

  104. Raper, S.E., Chirmule, N., Lee, F.S., Wivel, N.A., Bagg, A., Gao, G., Wilson, J.M. and Batshaw, M.L. (2003). Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol. Genet. Metab. 80, 148–158.

    PubMed  CAS  Google Scholar 

  105. Christ, M., Lusky, M., Stoeckel, F., Dreyer, D., Dieterlé, A., Michou, A.I., Pavirani, A. and Mehtali, M. (1997). Gene therapy with recombinant adenovirus vectors: evaluation of the host immune response. Immunol. Lett. 57, 19–25.

    PubMed  CAS  Google Scholar 

  106. Couto, L.B. (2004). Preclinical gene therapy studies for hemophilia using adenoassociated virus (AAV) vectors. Semin. Thromb. Hemost. 30, 161–171.

    PubMed  CAS  Google Scholar 

  107. Miller, D.G., Rutledge, E.A. and Russell, D.W. (2002). Chromosomal effects of adeno-associated virus vector integration. Nat. Genet. 30, 147–148.

    PubMed  CAS  Google Scholar 

  108. Miller, D.G., Petek, L.M. and Russell, D.W. (2004). Adeno-associated virus vectors integrate at chromosome breakage sites. Nat. Genet. 36, 767–773.

    PubMed  CAS  Google Scholar 

  109. Hacein-Bey-Abina, S., von Kalle, C., Schmidt, M., McCormack, M.P., Wulffraat, N., Leboulch, P., Lim, A., Osborne, C.S., Pawliuk, R., Morillon, E., Sorensen, R., Forster, A., Fraser, P., Cohen, J.I., de Saint, B.G., Alexander, I., Wintergerst, U., Frebourg, T., Aurias, A., Stoppa-Lyonnet, D., Romana, S., Radford-Weiss, I., Gross, F., Valensi, F., Delabesse, E., Macintyre, E., Sigaux, F., Soulier, J., Leiva, L.E., Wissler, M., Prinz, C., Rabbitts, T.H., Le Deist, F., Fischer, A. and Cavazzana-Calvo, M. (2003). LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCIDX1. Science 302, 415–419.

    PubMed  CAS  Google Scholar 

  110. Cavazzana-Calvo, M., Fischer, A., Hacein-Bey-Abina, S., von Kalle, C., Schmidt, M., Le Deist, F., Wulffraat, N., McIntyre, E., Radford, I., Villeval, J. and Fraser, C.C. (2003). A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. 348, 255–256.

    PubMed  Google Scholar 

  111. Guhr, A., Kurtz, A., Friedgen, K. and La ser, P. (2006). Current state of human embryonic stem cell research: an overview of cell lines and their use in experimental work. Stem Cells 24, 2187–2191.

    Google Scholar 

  112. Guan, K., Nayernia, K., Maier, L.S., Wagner, S., Dressel, R., Lee, J.H., Nolte, J., Wolf, F., Li, M., Engel, W. and Hasenfuss, G. (2006). Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440, 1199–1203.

    PubMed  CAS  Google Scholar 

  113. Shamblott, M.J., Axelman, J., Wang, S., Bugg, E.M., Littlefield, J.W., Donovan, P.J., Blumenthal, P.D., Huggins, G.R. and Gearhart, J.D. (1998). Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. Natl. Acad. Sci. U.S.A. 95, 13726–13731.

    PubMed  CAS  Google Scholar 

  114. Donovan, P.J. and de Miguel, M.P. (2003). Turning germ cells into stem cells. Curr. Opin. Genet. Dev. 13, 463–471.

    PubMed  CAS  Google Scholar 

  115. Klimanskaya, I., Chung, Y., Becker, S., Lu, S.J. and Lanza, R. (2006). Human embryonic stem cell lines derived from single blastomeres. Nature 444, 481–485.

    PubMed  CAS  Google Scholar 

  116. Hochedlinger, K. and Jaenisch, R. (2006). Nuclear reprogramming and pluripotency. Nature 441, 1061–1067.

    PubMed  CAS  Google Scholar 

  117. Takahashi, K. and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676.

    PubMed  CAS  Google Scholar 

  118. Evans, M.J. and Kaufman, M.H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156.

    PubMed  CAS  Google Scholar 

  119. Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S. and Jones, J.M. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.

    PubMed  CAS  Google Scholar 

  120. Orimo, A., Gupta, P.B., Sgroi, D.C., Arenzana-Seisdedos, F., Delaunay, T., Naeem, R., Carey, V.J., Richardson, A.L. and Weinberg, R.A. (2005). Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348.

    PubMed  CAS  Google Scholar 

  121. Hung, S.C., Deng, W.P., Yang, W.K., Liu, R.S., Lee, C.C., Su, T.C., Lin, R.J., Yang, D.M., Chang, C.W., Chen, W.H., Wei, H.J. and Gelovani, J.G. (2005). Mesenchymal stem cell targeting of microscopic tumors and tumor stroma development monitored by noninvasive in vivo positron emission tomography imaging. Clin. Cancer Res. 11, 7749–7756.

    PubMed  CAS  Google Scholar 

  122. Danks, M.K., Yoon, K.J., Bush, R.A., Remack, J.S., Wierdl, M., Tsurkan, L., Kim, S.U., Garcia, E., Metz, M.Z., Najbauer, J., Potter, P.M. and Aboody, K.S. (2007). Tumortargeted enzyme/prodrug therapy mediates long-term disease-free survival of mice bearing disseminated neuroblastoma. Cancer Res. 67, 22–25.

    PubMed  CAS  Google Scholar 

  123. Aboody, K.S., Najbauer, J., Schmidt, N.O., Yang, W., Wu, J.K., Zhuge, Y., Przylecki, W., Carroll, R., Black, P.M. and Perides, G. (2006). Targeting of melanoma brain metastases using engineered neural stem/progenitor cells. Neuro-oncology 8, 119–126.

    PubMed  CAS  Google Scholar 

  124. Aboody, K.S., Bush, R.A., Garcia, E., Metz, M.Z., Najbauer, J., Justus, K.A., Phelps, D.A., Remack, J.S., Yoon, K.J., Gillespie, S., Kim, S.U., Glackin, C.A., Potter, P.M. and Danks, M.K. (2006). Development of a tumor-selective approach to treat metastatic cancer. PLoS ONE 1, e23–e23.

    PubMed  Google Scholar 

  125. Studeny, M., Marini, F.C., Dembinski, J.L., Zompetta, C., Cabreira-Hansen, M., Bekele, B.N., Champlin, R.E. and Andreeff, M. (2004). Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J. Natl. Cancer Inst. 96, 1593–1603.

    PubMed  CAS  Google Scholar 

  126. Zhu, W., Xu, W., Jiang, R., Qian, H., Chen, M., Hu, J., Cao, W., Han, C. and Chen, Y. (2006). Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Exp. Mol. Pathol. 80, 267–274.

    PubMed  CAS  Google Scholar 

  127. Nakayama, N., Lee, J. and Chiu, L. (2000). Vascular endothelial growth factor synergistically enhances bone morphogenetic protein-4-dependent lymphohematopoietic cell generation from embryonic stem cells in vitro. Blood 95, 2275–2283.

    PubMed  CAS  Google Scholar 

  128. Kyba, M., Perlingeiro, R.C.R. and Daley, G.Q. (2002). HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 109, 29–37.

    PubMed  CAS  Google Scholar 

  129. Kondo, M., Wagers, A.J., Manz, M.G., Prohaska, S.S., Scherer, D.C., Beilhack, G.F., Shizuru, J.A. and Weissman, I.L. (2003). Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu. Rev. Immunol. 21, 759–806.

    PubMed  CAS  Google Scholar 

  130. Burt, R.K., Verda, L., Kim, D.A., Oyama, Y., Luo, K. and Link, C. (2004). Embryonic stem cells as an alternate marrow donor source: engraftment without graft-versus-host disease. J. Exp. Med. 199, 895–904.

    PubMed  CAS  Google Scholar 

  131. Park, C., Afrikanova, I., Chung, Y.S., Zhang, W.J., Arentson, E., Fong Gh, G.H., Rosendahl, A. and Choi, K. (2004). A hierarchical order of factors in the generation of FLK1- and SCL-expressing hematopoietic and endothelial progenitors from embryonic stem cells. Development 131, 2749–2762.

    PubMed  CAS  Google Scholar 

  132. Doetschman, T.C., Eistetter, H., Katz, M., Schmidt, W. and Kemler, R. (1985). The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 87, 27–45.

    PubMed  CAS  Google Scholar 

  133. Bautch, V.L., Stanford, W.L., Rapoport, R., Russell, S., Byrum, R.S. and Futch, T.A. (1996). Blood island formation in attached cultures of murine embryonic stem cells. Dev. Dyn. 205, 1–12.

    PubMed  CAS  Google Scholar 

  134. Yamashita, J., Itoh, H., Hirashima, M., Ogawa, M., Nishikawa, S., Yurugi, T., Naito, M., Nakao, K. and Nishikawa, S. (2000). Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408, 92–96.

    PubMed  CAS  Google Scholar 

  135. Kolossov, E., Fleischmann, B.K., Liu, Q., Bloch, W., Viatchenko-Karpinski, S., Manzke, O., Ji, G.J., Bohlen, H., Addicks, K. and Hescheler, J. (1998). Functional characteristics of ES cell-derived cardiac precursor cells identified by tissue-specific expression of the green fluorescent protein. J. Cell Biol. 143, 2045–2056.

    PubMed  CAS  Google Scholar 

  136. Yang, Y., Min, J.Y., Rana, J.S., Ke, Q., Cai, J., Chen, Y., Morgan, J.P. and Xiao, Y.F. (2002). VEGF enhances functional improvement of postinfarcted hearts by transplantation of ESC-differentiated cells. J. Appl. Physiol. 93, 1140–1151.

    PubMed  CAS  Google Scholar 

  137. Min, J.Y., Yang, Y., Converso, K.L., Liu, L., Huang, Q., Morgan, J.P. and Xiao, Y.F. (2002). Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J. Appl. Physiol. 92, 288–296.

    PubMed  Google Scholar 

  138. Müller, M., Fleischmann, B.K., Selbert, S., Ji, G.J., Endl, E., Middeler, G., Müller, O.J., Schlenke, P., Frese, S., Wobus, A.M., Hescheler, J., Katus, H.A. and Franz, W.M. (2000). Selection of ventricular-like cardiomyocytes from ES cells in vitro. FASEB J. 14, 2540–2548.

    PubMed  Google Scholar 

  139. Zandstra, P.W., Bauwens, C., Yin, T., Liu, Q., Schiller, H., Zweigerdt, R., Pasumarthi, K.B.S. and Field, L.J. (2003). Scalable production of embryonic stem cellderived cardiomyocytes. Tissue Eng. 9, 767–778.

    PubMed  CAS  Google Scholar 

  140. Hidaka, K., Lee, J.K., Kim, H.S., Ihm, C.H., Iio, A., Ogawa, M., Nishikawa, S.I., Kodama, I. and Morisaki, T. (2003). Chamber-specific differentiation of Nkx2.5-positive cardiac precursor cells from murine embryonic stem cells. FASEB J. 17, 740–742.

    Google Scholar 

  141. Min, J.Y., Yang, Y., Sullivan, M.F., Ke, Q., Converso, K.L., Chen, Y., Morgan, J.P. and Xiao, Y.F. (2003). Long-term improvement of cardiac function in rats after infarction by transplantation of embryonic stem cells. J. Thorac. Cardiovasc. Surg. 125, 361–369.

    PubMed  Google Scholar 

  142. Pinto, D.O., Kolterud, A. and Carlsson, L. (1998). Expression of the LIMhomeobox gene LH2 generates immortalized steel factor-dependent multipotent hematopoietic precursors. EMBO J. 17, 5744–5756.

    Google Scholar 

  143. Lieber, J.G., Webb, S., Suratt, B.T., Young, S.K., Johnson, G.L., Keller, G.M. and Worthen, G.S. (2004). The in vitro production and characterization of neutrophils from embryonic stem cells. Blood 103, 852–859.

    PubMed  CAS  Google Scholar 

  144. Eto, K., Murphy, R., Kerrigan, S.W., Bertoni, A., Stuhlmann, H., Nakano, T., Leavitt, A.D. and Shattil, S.J. (2002). Megakaryocytes derived from embryonic stem cells implicate CalDAG-GEFI in integrin signaling. Proc. Natl. Acad. Sci. U.S.A. 99, 12819–12824.

    PubMed  CAS  Google Scholar 

  145. Tsai, M., Wedemeyer, J., Ganiatsas, S., Tam, S.Y., Zon, L.I. and Galli, S.J. (2000). In vivo immunological function of mast cells derived from embryonic stem cells: an approach for the rapid analysis of even embryonic lethal mutations in adult mice in vivo. Proc. Natl. Acad. Sci. U.S.A. 97, 9186–9190.

    PubMed  CAS  Google Scholar 

  146. Hamaguchi-Tsuru, E., Nobumoto, A., Hirose, N., Kataoka, S., Fujikawa-Adachi, K., Furuya, M. and Tominaga, A. (2004). Development and functional analysis of eosinophils from murine embryonic stem cells. Br. J. Haematol. 124, 819–827.

    PubMed  Google Scholar 

  147. Fairchild, P.J., Nolan, K.F., Cartland, S., GraA a, L. and Waldmann, H. (2003). Stable lines of genetically modified dendritic cells from mouse embryonic stem cells. Transplantation 76, 606–608.

    Google Scholar 

  148. Carotta, S., Pilat, S., Mairhofer, A., Schmidt, U., Dolznig, H., Steinlein, P. and Beug, H. (2004). Directed differentiation and mass cultivation of pure erythroid progenitors from mouse embryonic stem cells. Blood 104, 1873–1880.

    PubMed  CAS  Google Scholar 

  149. Chang, A.H., Stephan, M.T. and Sadelain, M. (2006). Stem cell-derived erythroid cells mediate long-term systemic protein delivery. Nat. Biotechnol. 24, 1017–1021.

    PubMed  CAS  Google Scholar 

  150. Colman, A. (2004). Making new beta cells from stem cells. Semin. Cell Dev. Biol. 15, 337–345.

    PubMed  CAS  Google Scholar 

  151. Stoffel, M., Vallier, L. and Pedersen, R.A. (2004). Navigating the pathway from embryonic stem cells to beta cells. Semin. Cell Dev. Biol. 15, 327–336.

    PubMed  CAS  Google Scholar 

  152. D’Amour, K.A., Agulnick, A.D., Eliazer, S., Kelly, O.G., Kroon, E. and Baetge, E.E. (2005). Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat. Biotechnol. 23, 1534–1541.

    PubMed  Google Scholar 

  153. D’Amour, K.A., Bang, A.G., Eliazer, S., Kelly, O.G., Agulnick, A.D., Smart, N.G., Moorman, M.A., Kroon, E., Carpenter, M.K. and Baetge, E.E. (2006). Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat. Biotechnol. 24, 1392–1401.

    PubMed  Google Scholar 

  154. Hamazaki, T., Iiboshi, Y., Oka, M., Papst, P.J., Meacham, A.M., Zon, L.I. and Terada, N. (2001). Hepatic maturation in differentiating embryonic stem cells in vitro. FEBS Lett. 497, 15–19.

    PubMed  CAS  Google Scholar 

  155. Jones, E.A., Tosh, D., Wilson, D.I., Lindsay, S. and Forrester, L.M. (2002). Hepatic differentiation of murine embryonic stem cells. Exp. Cell Res. 272, 15–22.

    PubMed  CAS  Google Scholar 

  156. Yamada, T., Yoshikawa, M., Kanda, S., Kato, Y., Nakajima, Y., Ishizaka, S. and Tsunoda, Y. (2002). In vitro differentiation of embryonic stem cells into hepatocyte-like cells identified by cellular uptake of indocyanine green. Stem Cells 20, 146–154.

    PubMed  Google Scholar 

  157. Lin, R.Y., Kubo, A., Keller, G.M. and Davies, T.F. (2003). Committing embryonic stem cells to differentiate into thyrocyte-like cells in vitro. Endocrinology 144, 2644–2649.

    PubMed  CAS  Google Scholar 

  158. Ali, N.N., Edgar, A.J., Samadikuchaksaraei, A., Timson, C.M., Romanska, H.M., Polak, J.M. and Bishop, A.E. (2002). Derivation of type II alveolar epithelial cells from murine embryonic stem cells. Tissue Eng. 8, 541–550.

    PubMed  CAS  Google Scholar 

  159. Yamada, T., Yoshikawa, M., Takaki, M., Torihashi, S., Kato, Y., Nakajima, Y., Ishizaka, S. and Tsunoda, Y. (2002). In vitro functional gut-like organ formation from mouse embryonic stem cells. Stem Cells 20, 41–49.

    PubMed  Google Scholar 

  160. Brustle, O., Spiro, A.C., Karram, K., Choudhary, K., Okabe, S. and McKay, R.D. (1997). In vitro-generated neural precursors participate in mammalian brain development. Proc. Natl. Acad. Sci. U.S.A 94, 14809–14814.

    PubMed  CAS  Google Scholar 

  161. Brustle, O., Jones, K.N., Learish, R.D., Karram, K., Choudhary, K., Wiestler, O.D., Duncan, I.D. and McKay, R.D. (1999). Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285, 754–756.

    PubMed  CAS  Google Scholar 

  162. Kim, J.H., Auerbach, J.M., Rodríguez-Gómez, J.A., Velasco, I., Gavin, D., Lumelsky, N., Lee, S.H., Nguyen, J., Sánchez-Pernaute, R., Bankiewicz, K. and McKay, R. (2002). Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418, 50–56.

    PubMed  CAS  Google Scholar 

  163. Barberi, T., Klivenyi, P., Calingasan, N.Y., Lee, H., Kawamata, H., Loonam, K., Perrier, A.L., Bruses, J., Rubio, M.E., Topf, N., Tabar, V., Harrison, N.L., Beal, M.F., Moore, M.A.S. and Studer, L. (2003). Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat. Biotechnol. 21, 1200–1207.

    PubMed  CAS  Google Scholar 

  164. Tropepe, V., Hitoshi, S., Sirard, C., Mak, T.W., Rossant, J. and van der Kooy, D. (2001). Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30, 65–78.

    PubMed  CAS  Google Scholar 

  165. Bagutti, C., Wobus, A.M., Fa ssler, R. and Watt, F.M. (1996). Differentiation of embryonal stem cells into keratinocytes: comparison of wild-type and beta 1 integrindeficient cells. Dev. Biol. 179, 184–196.

    Google Scholar 

  166. Coraux, C., Hilmi, C., Rouleau, M., Spadafora, A., Hinnrasky, J., Ortonne, J.P., Dani, C. and Aberdam, D. (2003). Reconstituted skin from murine embryonic stem cells. Curr. Biol. 13, 849–853.

    PubMed  CAS  Google Scholar 

  167. Young, H.E., Duplaa, C., Katz, R., Thompson, T., Hawkins, K.C., Boev, A.N., Henson, N.L., Heaton, M., Sood, R., Ashley, D., Stout, C., Morgan, J.H., Uchakin, P.N., Rimando, M., Long, G.F., Thomas, C., Yoon, J.I., Park, J.E., Hunt, D.J., Walsh, N.M., Davis, J.C., Lightner, J.E., Hutchings, A.M., Murphy, M.L., Boswell, E., McAbee, J.A., Gray, B.M., Piskurich, J., Blake, L., Collins, J.A., Moreau, C., Hixson, D., Bowyer, F.P. and Black, A.C.J. (2005). Adult-derived stem cells and their potential for use in tissue repair and molecular medicine. J. Cell. Mol. Med. 9, 753–769.

    PubMed  Google Scholar 

  168. Serafini, M., Dylla, S.J., Oki, M., Heremans, Y., Tolar, J., Jiang, Y., Buckley, S.M., Pelacho, B., Burns, T.C., Frommer, S., Rossi, D.J., Bryder, D., Panoskaltsis-Mortari, A., O’Shaughnessy, M.J., Nelson-Holte, M., Fine, G.C., Weissman, I.L., Blazar, B.R. and Verfaillie, C.M. (2007). Hematopoietic reconstitution by multipotent adult progenitor cells: precursors to long-term hematopoietic stem cells. J. Exp. Med. 204, 129–139.

    PubMed  CAS  Google Scholar 

  169. Petrovic, V. and Stefanovic, V. (2009). Dental tissue–new source for stem cells. ScientificWorldJournal 9, 1167–1177.

    PubMed  CAS  Google Scholar 

  170. Fraser, J.K., Wulur, I., Alfonso, Z. and Hedrick, M.H. (2006). Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol. 24, 150–154.

    PubMed  CAS  Google Scholar 

  171. De Coppi, P., Bartsch, G., Siddiqui, M.M., Xu, T., Santos, C.C., Perin, L., Mostoslavsky, G., Serre, A.C., Snyder, E.Y., Yoo, J.J., Furth, M.E., Soker, S. and Atala, A. (2007). Isolation of amniotic stem cell lines with potential for therapy. Nat. Biotechnol. 25, 100–106.

    PubMed  Google Scholar 

  172. Auriche, C., Carpani, D., Conese, M., Caci, E., Zegarra-Moran, O., Donini, P. and Ascenzioni, F. (2002). Functional human CFTR produced by a stable minichromosome. EMBO Rep. 3, 862–868.

    PubMed  CAS  Google Scholar 

  173. Bunnell, B.A., Izadpanah, R., Ledebur Jr, H.C. and Perez, C.F. (2005). Development of mammalian artificial chromosomes for the treatment of genetic diseases: Sandhoff and Krabbe diseases. Expert Opin Biol Ther 5, 195–206.

    PubMed  CAS  Google Scholar 

  174. Ren, X., Katoh, M., Hoshiya, H., Kurimasa, A., Inoue, T., Ayabe, F., Shibata, K., Toguchida, J. and Oshimura, M. (2005). A novel human artificial chromosome vector provides effective cell lineage-specific transgene expression in human mesenchymal stem cells. Stem Cells 23, 1608–1616.

    PubMed  CAS  Google Scholar 

  175. Goldman, S. (2005). Stem and progenitor cell-based therapy of the human central nervous system. Nat. Biotechnol. 23, 862–871.

    PubMed  CAS  Google Scholar 

  176. Klug, M.G., Soonpaa, M.H., Koh, G.Y. and Field, L.J. (1996). Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J. Clin. Invest. 98, 216–224.

    PubMed  CAS  Google Scholar 

  177. Li, M., Pevny, L., Lovell-Badge, R. and Smith, A. (1998). Generation of purified neural precursors from embryonic stem cells by lineage selection. Curr. Biol. 8, 971–974.

    PubMed  CAS  Google Scholar 

  178. Billon, N., Jolicoeur, C., Ying, Q.L., Smith, A. and Raff, M. (2002). Normal timing of oligodendrocyte development from genetically engineered, lineage-selectable mouse ES cells. J. Cell. Sci. 115, 3657–3665.

    PubMed  CAS  Google Scholar 

  179. Gilad, A.A., McMahon, M.T., Walczak, P., Winnard, P.T.J., Raman, V., van Laarhoven, H.W.M., Skoglund, C.M., Bulte, J.W.M. and van Zijl, P.C.M. (2007). Artificial reporter gene providing MRI contrast based on proton exchange. Nat. Biotechnol. 25, 217–219.

    PubMed  CAS  Google Scholar 

  180. Gyöngyösi, M., Blanco, J., Marian, T., Trón, L., Petneházy, O., Petrasi, Z., Hemetsberger, R., Rodriguez, J., Font, G., Pavo, I.J., Kertész, I., Balkay, L., Pavo, N., Posa, A., Emri, M., Galuska, L., Kraitchman, D.L., Wojta, J., Huber, K. and Glogar, D. (2008). Serial noninvasive in vivo positron emission tomographic tracking of percutaneously intramyocardially injected autologous porcine mesenchymal stem cells modified for transgene reporter gene expression. Circ Cardiovasc Imaging 1, 94–103.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Katona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Katona, R.L., Vanderbyl, S.L., Perez, C.F. (2011). Mammalian Artificial Chromosomes and Clinical Applications for Genetic Modification of Stem Cells: An Overview. In: Hadlaczky, G. (eds) Mammalian Chromosome Engineering. Methods in Molecular Biology, vol 738. Humana Press. https://doi.org/10.1007/978-1-61779-099-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-099-7_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-098-0

  • Online ISBN: 978-1-61779-099-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics