Skip to main content

Lentiviral Vectors

  • Protocol
  • First Online:
Viral Vectors for Gene Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 737))

Abstract

Lentiviral vectors have evolved over the last decade as powerful, reliable, and safe tools for stable gene transfer in a wide variety of mammalian cells. Contrary to other vectors derived from oncoretroviruses, they allow for stable gene delivery into most nondividing primary cells. In particular, lentivectors (LVs) derived from HIV-1 have gradually evolved to display many desirable features aimed at increasing both their safety and their versatility. This is why lentiviral vectors are becoming the most useful and promising tools for genetic engineering, to generate cells that can be used for research, diagnosis, and therapy. This chapter describes protocols and guidelines, for production and titration of LVs, which can be implemented in a research laboratory setting, with an emphasis on standardization in order to improve transposability of results between laboratories. We also discuss latest designs in LV technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Russell, S. J., and Cosset, F. L. (1999) Modifying the host range properties of retroviral vectors, J Gene Med 1, 300–311.

    Article  PubMed  CAS  Google Scholar 

  2. Naldini, L. et al. (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector, Science 272, 263–267.

    Article  PubMed  CAS  Google Scholar 

  3. Kobinger, G. P., Weiner, D. J., Yu, Q. C., and Wilson, J. M. (2001) Filovirus-pseudotyped lentiviral vector can efficiently and stably transduce airway epithelia in vivo, Nat Biotechnol 19, 225–230.

    Article  PubMed  CAS  Google Scholar 

  4. Duisit, G. et al. (2002) Five recombinant simian immunodeficiency virus pseudotypes lead to exclusive transduction of retinal pigmented epithelium in rat, Mol Ther 6, 446–454.

    Article  PubMed  CAS  Google Scholar 

  5. Stitz, J. et al. (2000) Lentiviral vectors pseudotyped with envelope glycoproteins derived from gibbon ape leukemia virus and murine leukemia virus 10A1, Virology 273, 16–20.

    Article  PubMed  CAS  Google Scholar 

  6. Hanawa, H. et al. (2002) Comparison of various envelope proteins for their ability to pseudotype lentiviral vectors and transduce primitive hematopoietic cells from human blood, Mol Ther 5, 242–251.

    Article  PubMed  CAS  Google Scholar 

  7. Sandrin, V. et al. (2002) Lentiviral vectors pseudotyped with a modified RD114 ­envelope glycoprotein show increased stability in sera and augmented transduction of primary lymphocytes and CD34+ cells derived from human and nonhuman primates, Blood 100, 823–832.

    Article  PubMed  CAS  Google Scholar 

  8. Frecha, C. et al. (2008) Stable transduction of quiescent T cells without induction of cycle progression by a novel lentiviral vector pseudotyped with measles virus glycoproteins, Blood 112, 4843–4852.

    Article  PubMed  CAS  Google Scholar 

  9. Zufferey, R., Nagy, D., Mandel, R. J., Naldini, L., and Trono, D. (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo, Nat Biotechnol 15, 871–875.

    Article  PubMed  CAS  Google Scholar 

  10. Zufferey, R., Donello, J. E., Trono, D., and Hope, T. J. (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors, J Virol 73, 2886–2892.

    PubMed  CAS  Google Scholar 

  11. Follenzi, A., Ailles, L. E., Bakovic, S., Geuna, M., and Naldini, L. (2000) Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences, Nat Genet 25, 217–222.

    Article  PubMed  CAS  Google Scholar 

  12. Zennou, V., Petit, C., Guetard, D., Nerhbass, U., Montagnier, L., and Charneau, P. (2000) HIV-1 genome nuclear import is mediated by a central DNA flap, Cell 101, 173–185.

    Article  PubMed  CAS  Google Scholar 

  13. Zufferey, R. et al. (1998) Self-inactivating lentivirus vector for safe and efficient In vivo gene delivery, J Virol 72, 9873–9880.

    PubMed  CAS  Google Scholar 

  14. Dull, T. et al. (1998) A third-generation lentivirus vector with a conditional packaging system, J Virol 72, 8463–8471.

    PubMed  CAS  Google Scholar 

  15. Gossen, M., Freundlieb, S., Bender, G., Muller, G., Hillen, W., and Bujard, H. (1995) Transcriptional activation by tetracyclines in mammalian cells, Science 268, 1766–1769.

    Article  PubMed  CAS  Google Scholar 

  16. Lois, C., Hong, E. J., Pease, S., Brown, E. J., and Baltimore, D. (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors, Science 295, 868–872.

    Article  PubMed  CAS  Google Scholar 

  17. Salmon, P., Oberholzer, J., Occhiodoro, T., Morel, P., Lou, J., and Trono, D. (2000) Reversible immortalization of human primary cells by lentivector- mediated transfer of specific genes, Mol Ther 2, 404–414.

    Article  PubMed  CAS  Google Scholar 

  18. Niwa, H., Yamamura, K., and Miyazaki, J. (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector, Gene 108, 193–199.

    Article  PubMed  CAS  Google Scholar 

  19. Mizushima, S., and Nagata, S. (1990) pEF-BOS, a powerful mammalian expression vector, Nucleic Acids Res 18, 5322.

    Article  PubMed  CAS  Google Scholar 

  20. Kostic, C. et al. (2003) Activity analysis of housekeeping promoters using self-inactivating lentiviral vector delivery into the mouse retina, Gene Ther 10, 818–821.

    Article  PubMed  CAS  Google Scholar 

  21. Escarpe, P. et al. (2003) Development of a sensitive assay for detection of replication-competent recombinant lentivirus in large-scale HIV-based vector preparations, Mol Ther 8, 332–341.

    Article  PubMed  CAS  Google Scholar 

  22. Frecha, C., Szecsi, J., Cosset, F. L., and Verhoeyen, E. (2008) Strategies for targeting lentiviral vectors, Curr Gene Ther 8, 449–460.

    Article  PubMed  CAS  Google Scholar 

  23. Mochizuki, H., Schwartz, J. P., Tanaka, K., Brady, R. O., and Reiser, J. (1998) High-titer human immunodeficiency virus type 1-based vector systems for gene delivery into nondividing cells, J Virol 72, 8873–8883.

    PubMed  CAS  Google Scholar 

  24. Mazarakis, N. D. et al. (2001) Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery, Hum Mol Genet 10, 2109–2121.

    Article  PubMed  CAS  Google Scholar 

  25. Wong, L. F. et al. (2004) Transduction ­patterns of pseudotyped lentiviral vectors in the nervous system, Mol Ther 9, 101–111.

    Article  PubMed  CAS  Google Scholar 

  26. Azzouz, M. et al. (2004) Lentivector-mediated SMN replacement in a mouse model of spinal muscular atrophy, J Clin Invest 114, 1726–1731.

    PubMed  CAS  Google Scholar 

  27. Watson, D. J., Kobinger, G. P., Passini, M. A., Wilson, J. M., and Wolfe, J. H. (2002) Targeted transduction patterns in the mouse brain by lentivirus vectors pseudotyped with VSV, Ebola, Mokola, LCMV, or MuLV envelope proteins, Mol Ther 5, 528–537.

    PubMed  CAS  Google Scholar 

  28. Bemelmans, A. P. et al. (2005) Retinal cell type expression specificity of HIV-1-derived gene transfer vectors upon subretinal injection in the adult rat: influence of pseudotyping and promoter, J Gene Med 7, 1367–1374.

    Article  PubMed  CAS  Google Scholar 

  29. Miletic, H. et al. (2004) Selective transduction of malignant glioma by lentiviral vectors pseudotyped with lymphocytic choriomeningitis virus glycoproteins, Hum Gene Ther 15, 1091–1100.

    Article  PubMed  CAS  Google Scholar 

  30. Stein, C. S., Martins, I., and Davidson, B. L. (2005) The lymphocytic choriomeningitis virus envelope glycoprotein targets lentiviral gene transfer vector to neural progenitors in the murine brain, Mol Ther 11, 382–389.

    Article  PubMed  CAS  Google Scholar 

  31. Kang, Y. et al. (2002) In vivo gene transfer using a nonprimate lentiviral vector pseudotyped with Ross River Virus glycoproteins, J Virol 76, 9378–9388.

    Article  PubMed  CAS  Google Scholar 

  32. Medina, M. F. et al. (2003) Lentiviral vectors pseudotyped with minimal filovirus envelopes increased gene transfer in murine lung, Mol Ther 8, 777–789.

    Article  PubMed  Google Scholar 

  33. Silvertown, J. D., Walia, J. S., Summerlee, A. J., and Medin, J. A. (2006) Functional expression of mouse relaxin and mouse relaxin-3 in the lung from an Ebola virus glycoprotein-pseudotyped lentivirus via tracheal delivery, Endocrinology 147, 3797–3808.

    Article  PubMed  CAS  Google Scholar 

  34. Hachiya, A. et al. (2007) Gene transfer in human skin with different pseudotyped HIV-based vectors, Gene Ther 14, 648–656.

    Article  PubMed  CAS  Google Scholar 

  35. Kang, Y. et al. (2005) Persistent expression of factor VIII in vivo following nonprimate lentiviral gene transfer, Blood 106, 1552–1558.

    Article  PubMed  CAS  Google Scholar 

  36. Bartosch, B., Dubuisson, J., and Cosset, F. L. (2003) Infectious hepatitis C virus pseudo-particles containing functional E1-E2 envelope protein complexes, J Exp Med 197, 633–642.

    Article  PubMed  CAS  Google Scholar 

  37. Kowolik, C. M., and Yee, J. K. (2002) Preferential transduction of human hepatocytes with lentiviral vectors pseudotyped by Sendai virus F protein, Mol Ther 5, 762–769.

    Article  PubMed  CAS  Google Scholar 

  38. Christodoulopoulos, I., and Cannon, P. M. (2001) Sequences in the cytoplasmic tail of the gibbon ape leukemia virus envelope protein that prevent its incorporation into lentivirus vectors, J Virol 75, 4129–4138.

    Article  PubMed  CAS  Google Scholar 

  39. Frecha, C. et al. (2009) Efficient and stable transduction of resting B lymphocytes and primary chronic lymphocyte leukemia cells using measles virus gp displaying lentiviral vectors, Blood 114, 3173–3180.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ophélie Cherpin and David Suter for their help in the construction and design of Gateway® lentivectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Salmon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC 2011

About this protocol

Cite this protocol

Giry-Laterrière, M., Verhoeyen, E., Salmon, P. (2011). Lentiviral Vectors. In: Merten, OW., Al-Rubeai, M. (eds) Viral Vectors for Gene Therapy. Methods in Molecular Biology, vol 737. Humana Press. https://doi.org/10.1007/978-1-61779-095-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-095-9_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-094-2

  • Online ISBN: 978-1-61779-095-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics