Skip to main content

Methods to Construct Recombinant Adenovirus Vectors

  • Protocol
  • First Online:
Viral Vectors for Gene Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 737))

Abstract

The most efficient system to introduce genes of interest within the adenovirus genome is by homologous recombination in microorganisms. In this chapter, the most popular procedures are described: two for homologous recombination in Escherichia coli, and one in yeast. Main differences between procedures are found in the plasmids needed as well as in the selection system used to rapidly identify newly generated recombinant adenovirus. The adenovirus genomes are then analyzed to confirm their identity and integrity, and further linearized to generate a viral pre-stock in permissive human cells. Finally, as a previous step before its amplification at medium or large scale, the viral pre-stock must be analyzed to quantify its potency and infectivity as well as to exclude the presence of unwanted replication competent particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Graham, F. L., and Prevec, L. (1995) Methods for construction of adenovirus vectors Mol. Biotechnol. 3, 207–220.

    Google Scholar 

  2. Barratt-Boyes, S. M., Soloff, A. C., Gao, W., Nwanegbo, E., Liu, X., Rajakumar, P. A., et al. (2006) Broad cellular immunity with robust memory responses to simian immunodeficiency virus following serial vaccination with adenovirus 5- and 35-based vectors. J. Gen. Virol. 87, 139–149.

    Article  PubMed  CAS  Google Scholar 

  3. Glasgow, J. N., Kremer, E. J., Hemminki, A., Siegal, G. P., Douglas, J. T., and Curiel, D. T. (2004) An adenovirus vector with a chimeric fiber derived from canine adenovirus type 2 displays novel tropism. Virology 324, 103–116.

    Article  PubMed  CAS  Google Scholar 

  4. Cascallo, M., Alonso, M. M., Rojas, J. J., Perez-Gimenez, A., Fueyo, J., and Alemany, R. (2007) Systemic toxicity-efficacy profile of ICOVIR-5, a potent and selective oncolytic adenovirus based on the pRB pathway. Mol. Ther. 15, 1607–1615.

    Article  PubMed  CAS  Google Scholar 

  5. Alba, R., Hearing, P., Bosch, A., and Chillon, M. (2007) Differential amplification of adenovirus vectors by flanking the packaging signal with attB/attP-PhiC31 sequences: implications for helper-dependent adenovirus production. Virology 367, 51–58.

    Article  PubMed  CAS  Google Scholar 

  6. Kremer, E. J., Boutin, S., Chillon, M., and Danos, O. (2000) Canine adenovirus vectors: an alternative for adenovirus-mediated gene transfer. J. Virol. 74, 505–512.

    Article  PubMed  CAS  Google Scholar 

  7. Delenda, C., Chillon, M., Douar, A.-M., and Merten, O.-W. (2007) Cells for gene therapy and vector production. Methods in Biotechnology: Animal Cell Biotechnology: Methods and Protocols. Humana Press, (Editor: Ralf Poertner) 24, 23–91.

    Google Scholar 

  8. Luo, J., Deng, Z. L., Luo, X., Tang, N., Song, W. X., Chen, J., et al. (2007) A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat. Protoc. 2, 1236–1247.

    Article  PubMed  CAS  Google Scholar 

  9. Wu, C., Nerurkar, V. R., Yanagihara, R., and Lu, Y. (2008) Effective modifications for improved homologous recombination and high-efficiency generation of recombinant adenovirus-based vectors. J. Virol. Methods 153, 120–128.

    Article  PubMed  CAS  Google Scholar 

  10. Hokanson, C. A., Dora, E., Donahue, B. A., Rivkin, M., Finer, M., and Mendez, M. J. (2003) Hybrid yeast-bacteria cloning system used to capture and modify adenoviral and nonviral genomes. Hum. Gene Ther. 14, 329–339.

    Article  PubMed  CAS  Google Scholar 

  11. Burova, E., and Ioffe, E. (2005) Chromatographic purification of recombinant adenoviral and adeno-associated viral vectors: methods and implications. Gene Ther. 12 Suppl 1, S5–S17.

    Google Scholar 

  12. Umana, P., Gerdes, C. A., Stone, D., Davis, J. R., Ward, D., Castro, M. G., et al. (2001) Efficient FLPe recombinase enables scalable production of helper-dependent adenoviral vectors with negligible helper-virus contamination. Nat. Biotechnol. 19, 582–585.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Chillon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC 2011

About this protocol

Cite this protocol

Chillon, M., Alemany, R. (2011). Methods to Construct Recombinant Adenovirus Vectors. In: Merten, OW., Al-Rubeai, M. (eds) Viral Vectors for Gene Therapy. Methods in Molecular Biology, vol 737. Humana Press. https://doi.org/10.1007/978-1-61779-095-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-095-9_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-094-2

  • Online ISBN: 978-1-61779-095-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics