Skip to main content

Herpes Simplex Virus Type 1-Derived Recombinant and Amplicon Vectors

  • Protocol
  • First Online:
Viral Vectors for Gene Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 737))

Abstract

Herpes simplex virus type 1 (HSV-1) is a human pathogen whose lifestyle is based on a long-term dual interaction with the infected host, being able to establish both lytic and latent infections. The virus genome is a 153 kbp double-stranded DNA molecule encoding more than 80 genes. The interest of HSV-1 as gene transfer vector stems from its ability to infect many different cell types, both quiescent and proliferating cells, the very high packaging capacity of the virus capsid, the outstanding neurotropic adaptations that this virus has evolved, and the fact that it never integrates into the cellular chromosomes, thus avoiding the risk of insertional mutagenesis. Two types of vectors can be derived from HSV-1, recombinant vectors and amplicon vectors, and different methodologies have been developed to prepare large stocks of each type of vector. This chapter summarizes (1) the two approaches most commonly used to prepare recombinant vectors through homologous recombination, either in eukaryotic cells or in bacteria, and (2) the two methodologies currently used to generate helper-free amplicon vectors, either using a bacterial artificial chromosome (BAC)-based approach or a Cre/loxP site-specific recombination strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roizman, B., and Knipe, D.M. Herpes simplex viruses and their replication. In: Knipe DM, Howley PM (eds). Fields Virology. Lippincot, Williams and Wilkins: Philadelphia, PA, 2001, pp. 2399–2460.

    Google Scholar 

  2. Marozin, S., Prank, U., and Sodeik, B. (2004) Herpes simplex virus type 1 infection of polarized epithelial cells requires microtubules and access to receptors present at cell-cell contact sites. J. Gen. Virol. 85, 775–786.

    Article  PubMed  CAS  Google Scholar 

  3. Honess, R.W., and Roizman, B. (1975) Regulation of herpesvirus macromolecular synthesis: sequential transition of polypeptide synthesis requires functional viral polypeptides. Proc. Natl. Acad. Sci. USA. 72, 1276–1280.

    Article  PubMed  CAS  Google Scholar 

  4. Batterson, W., and Roizman, B. (1983) Characterization of the herpes simplex virion-associated factor responsible for the induction of alpha genes. J. Virol. 46, 371–377.

    PubMed  CAS  Google Scholar 

  5. Skepper, J.N., Whiteley, A., Browne, H., and Minson, A. (2001) Herpes simplex virus nucleocapsids mature to progeny virions by an envelopment > deenvelopment > reenvelopment pathway. J. Virol. 75, 5697–5702.

    Article  PubMed  CAS  Google Scholar 

  6. Deshmane, S.L., and Fraser, N.W. (1989) During latency, herpes simplex virus type 1 DNA is associated with nucleosomes in a chromatin structure. J. Virol. 63, 943–947.

    PubMed  CAS  Google Scholar 

  7. Farrell, M.J., Dobson, A.T., Feldman, L.T. (1991) Herpes simplex virus latency-associated transcript is a stable intron. Proc. Natl. Acad. Sci. U S A. 88, 790–794.

    Article  PubMed  CAS  Google Scholar 

  8. Umbach, J.L., Kramer, M.F., Jurak, I., Karnowski, H.W., Coen, D.M., and Cullen, B.R. (2008) MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 454, 780–783.

    PubMed  CAS  Google Scholar 

  9. Preston, C.M. (2000) Repression of viral transcription during herpes simplex virus latency. J. Gen. Virol. 8, 1–19.

    Google Scholar 

  10. Todo, T. (2008) Oncolytic virus therapy using genetically engineered herpes simplex viruses. Front. Biosci. 13, 2060–2064.

    Article  PubMed  CAS  Google Scholar 

  11. Burton, E.A., Fink, D.J., and Glorioso, J.C. (2005) Replication-defective genomic HSV gene therapy vectors: design, production and CNS applications. Curr. Opin. Mol. Ther. 7, 326–336.

    PubMed  CAS  Google Scholar 

  12. Oehmig, A., Fraefel, C., and Breakefield, X.O. (2004) Update on herpesvirus amplicon vectors. Mol. Ther. 10, 630–643.

    Article  PubMed  CAS  Google Scholar 

  13. Cuchet, D., Potel, C., Thomas, J. and Epstein, A.L. (2007) HSV-1 amplicon vectors: a promising and versatile tool for gene delivery. Expert Opin. Biol. Ther. 7, 975–995.

    Article  PubMed  CAS  Google Scholar 

  14. Manservigi, R., Argnani, R., Marconi, P. and Epstein, A.L. (2007). Herpesvirus-based vectors for gene transfer, gene therapy, and the development of novel vaccines. In Virus Expression Vectors, pp205–246. Ed. Kathleen L. Hefferon. Transworld Research Network.

    Google Scholar 

  15. Krisky, D.M., Marconi, P.C., Oligino, T.J., Rouse, R.J., Fink, D.J., Cohen, J.B., Watkins, S.C., and Glorioso, J.C. (1998) Development of herpes simplex virus replication-defective multigene vectors for combination gene therapy applications. Gene Ther. 5, 1517–1530.

    Article  PubMed  CAS  Google Scholar 

  16. Wu, N., Watkins, S.C., Schaffer, P.A., and DeLuca, N.A. (1996) Prolonged gene expression and cell survival after infection by a herpes simplex virus mutant defective in the immediate-early genes encoding ICP4, ICP27, and ICP22. J. Virol. 70, 6358–6369.

    PubMed  CAS  Google Scholar 

  17. Samaniego, L.A., Neiderhiser, L., and DeLuca N.A. (1998) Persistence and expression of the herpes simplex virus genome in the absence of immediate-early proteins. J. Virol. 72, 3307–3320.

    PubMed  CAS  Google Scholar 

  18. Berto, E., Bozac, A., and Marconi, P. (2005) Development and application of replication-incompetent HSV-1-based vectors. Gene Ther. 12 Suppl 1:S98–S102.

    Article  PubMed  CAS  Google Scholar 

  19. Krisky, D.M., Wolfe, D., Goins, W.F., Marconi, P.C., Ramakrishnan, R., Mata, M., Rouse, R.J., Fink, D.J., and Glorioso, J.C. (1998) Deletion of multiple immediate-early genes from herpes simplex virus reduces cytotoxicity and permits long-term gene expression in neurons. Gene Ther. 5,1593–1603.

    Article  PubMed  CAS  Google Scholar 

  20. Advani, S.J., Weischelbaum, R.R., Whitley, R.J., and Roizman, B. (2002) Friendly fire: redirecting herpes simplex virus-1 for therapeutic applications. Clin. Microbiol. Infect. 8, 551–563.

    Article  PubMed  CAS  Google Scholar 

  21. Argnani, R., Lufino, M., Manservigi, M., and Manservigi, R. (2005) Replication-competent herpes simplex vectors: design and applications. Gene Ther. 12 Suppl 1:S170–177.

    Article  PubMed  CAS  Google Scholar 

  22. Nawa, A., Luo, C., Zhang, L., Ushjima, Y., Ishida, D., Kamakura, M., Fujimoto, Y., Goshima, F., Kikkawa, F., and Nishiyama, Y. (2008) Non-engineered, naturally oncolytic herpes simplex virus HSV1 HF-10: applications for cancer gene therapy. Curr. Gene Ther. 8, 208–221.

    Article  PubMed  CAS  Google Scholar 

  23. Gage, P.J., Sauer, B., Levine, M., and Glorioso, J.C. (1992) A cell-free recombination system for site-specific integration of multigenic shuttle plasmids into the herpes simplex virus type 1 genome. J. Virol. 66, 5509–5515.

    PubMed  CAS  Google Scholar 

  24. Rinaldi, A., Marshall, K.R., Preston, C.M. (1999) A non-cytotoxic herpes simplex virus vector which expresses Cre recombinase directs efficient site specific recombination. Virus Res. 65, 11–20.

    Article  PubMed  CAS  Google Scholar 

  25. Stricklett, P.K., Nelson, R.D., and Kohan, D.E. (1998) Site-specific recombination using an epitope tagged bacteriophage P1 Cre recombinase. Gene 215, 415–423.

    Article  PubMed  CAS  Google Scholar 

  26. Krisky, D.M., Marconi, P.C., Oligino, T., Rouse, R.J., Fink, D.J., and Glorioso, J.C. (1997) Rapid method for construction of recombinant HSV gene transfer vectors. Gene Ther. 4, 1120–1125.

    Article  PubMed  CAS  Google Scholar 

  27. Saeki, Y., Ichikawa, T., Saeki, A., Chiocca, E.A., Tobler, K., Ackermann, M., Breakefield, X.O., and Fraefel, C. (1998) Herpes simplex virus type 1 DNA amplified as bacterial artificial chromosome in Escherichia coli: rescue of replication-competent virus progeny and packaging of amplicon vectors. Human Gene Ther. 9, 2787–2794.

    Article  CAS  Google Scholar 

  28. Tanaka, M., Kagawa, H., Yamanashi, Y., Sata, T., and Kawaguchi, Y. (2003) Construction of an excisable bacterial artificial chromosome containing a full-length infectious clone of herpes simplex virus type 1: viruses reconstituted from the clone exhibit wild-type properties in vitro and in vivo. J. Virol. 77, 1382–91.

    Article  PubMed  CAS  Google Scholar 

  29. Fraefel, C., Song, S., Lim, F., Lang, P., Yu, L., Wang, Y., Wild, P., and Geller, A.I. (1996). Helper virus-free transfer of herpes simplex virus type 1 plasmid vectors into neural cells. J. Virol. 70, 7190–7197.

    PubMed  CAS  Google Scholar 

  30. Saeki, Y., Fraefel, C., Ichikawa, T., Breakefield, X.O., Chiocca, E.A. (2001) Improved helper virus-free packaging system for HSV ­amplicon vectors using an ICP27-deleted, oversized HSV-1 DNA in a bacterial artificial chromosome. Mol. Ther. 3, 591–601.

    Article  PubMed  CAS  Google Scholar 

  31. Zaupa, C., Revol-Guyot, V. and Epstein, A.L. (2003) Improved packaging system for generation of high levels non-cytotoxic HSV-1 amplicon vectors using Cre-loxP site-specific recombination to delete the packaging signals of defective helper genomes. Hum. Gene Ther. 14, 1049–1063.

    Article  PubMed  CAS  Google Scholar 

  32. Warming, S., Costantino, N., Court, D.L., Jenkins, N.A., and Copeland, N.G. (2005) Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res. 33:e36.

    Article  PubMed  Google Scholar 

  33. Smith, I.L., Hardwicke, M.A., and Sandri-Goldin, R.M. (1992) Evidence that the herpes simplex virus immediate early protein ICP27 acts post-transcriptionally during infection to regulate gene expression. Virology 186, 74–86.

    Article  PubMed  CAS  Google Scholar 

  34. Kashima, T., Vinters, H.V., and Campagnoni, A.T. (1995) Unexpected expression of intermediate filament protein genes in human oligodendroglioma cell lines. J. Neuropathol. Exp. Neurol. 54, 23–31.

    Article  PubMed  CAS  Google Scholar 

  35. McGeoch, D.J., Dalrymple, M.A., Davison, A.J., Dolan, A., Frame, M.C., McNab, D., Perry, L.J., Scott, J.E., and Taylor, P. (1988) The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J. Gen. Virol. 69, 1531–15374.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto L. Epstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC 2011

About this protocol

Cite this protocol

Fraefel, C., Marconi, P., Epstein, A.L. (2011). Herpes Simplex Virus Type 1-Derived Recombinant and Amplicon Vectors. In: Merten, OW., Al-Rubeai, M. (eds) Viral Vectors for Gene Therapy. Methods in Molecular Biology, vol 737. Humana Press. https://doi.org/10.1007/978-1-61779-095-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-095-9_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-094-2

  • Online ISBN: 978-1-61779-095-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics