Skip to main content

Telomere Strand-Specific Length Analysis by Fluorescent In Situ Hybridization (Q-CO-FISH)

  • Protocol
  • First Online:
Telomeres and Telomerase

Part of the book series: Methods in Molecular Biology ((MIMB,volume 735))

Abstract

The implementation of quantitative approaches in telomere chromosome-oriented FISH (telomeric CO-FISH) allows the assessment of the relative efficiency of lagging versus leading strand telomere replication and thus provides information on the implicated mechanisms. Here, we describe a simple method for telomere strand-specific analyses and discuss its potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdallah, P., Luciano, P., Runge, K.W., Lisby, M., Geli, V., Gilson, E., and Teixeira, M. T. (2009) A two-step model for senescence triggered by a single critically short telomere, Nat Cell Biol 11, 988ā€“993.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. Der-Sarkissian, H., Bacchetti, S., Cazes, L., and Londono-Vallejo, J. A. (2004) The shortest telomeres drive karyotype evolution in transformed cells, Oncogene 23, 1221ā€“1228.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  3. Hemann, M. T., Strong, M. A., Hao, L. Y., and Greider, C. W. (2001) The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability, Cell 107, 67ā€“77.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  4. Allsopp, R. C., Chang, E., Kashefi-Aazam, M., Rogaev, E. I., Piatyszek, M. A., Shay, J. W., and Harley, C. B. (1995) Telomere shortening is associated with cell division in vitro and in vivo, Exp Cell Res 220, 194ā€“200.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  5. Allsopp, R. C., and Harley, C. B. (1995) Evidence for a critical telomere length in senescent human fibroblasts, Exp Cell Res 219, 130ā€“136.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  6. Brummendorf, T. H., Mak, J., Sabo, K. M., Baerlocher, G. M., Dietz, K., Abkowitz, J. L., and Lansdorp, P. M. (2002) Longitudinal studies of telomere length in feline blood cells: implications for hematopoietic stem cell turnover in vivo, Exp Hematol 30, 1147ā€“1152.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  7. Huffman, K. E., Levene, S. D., Tesmer, V. M., Shay, J. W., and Wright, W. E. (2000) Telomere shortening is proportional to the size of the 3ā€² G-rich telomeric overhang, J Biol Chem.

    Google ScholarĀ 

  8. Hug, N., and Lingner, J. (2006) Telomere length homeostasis, Chromosoma.

    Google ScholarĀ 

  9. Verdun, R. E., and Karlseder, J. (2007) Replication and protection of telomeres, Nature 447, 924ā€“931.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  10. Gilson, E., and Geli, V. (2007) How telomeres are replicated, Nat Rev Mol Cell Biol 825ā€“838.

    Google ScholarĀ 

  11. Broccoli, D., Smogorzewska, A., Chong, L., and de Lange, T. (1997) Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2, Nat Genet 17, 231ā€“235.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  12. Sfeir, A., Kosiyatrakul, S. T., Hockemeyer, D., MacRae, S. L., Karlseder, J., Schildkraut, C. L., and de Lange, T. (2009) Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication, Cell 138, 90ā€“103.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  13. van Overbeek, M., and de Lange, T. (2006) Apollo, an Artemis-related nuclease, interacts with TRF2 and protects human telomeres in S phase, Curr Biol 16, 1295ā€“1302.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  14. Lenain, C., Bauwens, S., Amiard, S., Brunori, M., Giraud-Panis, M. J., and Gilson, E. (2006) The Apollo 5ā€² exonuclease functions together with TRF2 to protect telomeres from DNA repair, Curr Biol 16, 1303ā€“1310.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  15. Crabbe, L., Verdun, R. E., Haggblom, C. I., and Karlseder, J. (2004) Defective telomere lagging strand synthesis in cells lacking WRN helicase activity, Science 306, 1951ā€“1953.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  16. Bailey, S. M., Cornforth, M. N., Kurimasa, A., Chen, D. J., and Goodwin, E. H. (2001) Strand-specific postreplicative processing of mammalian telomeres, Science 293, 2462ā€“2465.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  17. Cornforth, M. N., and Eberle, R. L. (2001) Termini of human chromosomes display elevated rates of mitotic recombination, Mutagenesis 16, 85ā€“89.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  18. LondoƱo-Vallejo, J. A., Der-Sarkissian, H., Cazes, L., Bacchetti, S., and Reddel, R. (2004) Alternative Lengthening of Telomeres is Characterized by High Rates of Inter-Telomeric Exchange, Cancer Research 64, 2324ā€“2327.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  19. Bailey, S. M., Brenneman, M. A., and Goodwin, E. H. (2004) Frequent recombination in telomeric DNA may extend the proliferative life of telomerase-negative cells, Nucleic Acids Res 32, 3743ā€“3751. Print 2004.

    Google ScholarĀ 

  20. Wang, R. C., Smogorzewska, A., and de Lange, T. (2004) Homologous recombination generates T-loop-sized deletions at human telomeres, Cell 119, 355ā€“368.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  21. Arnoult, N., Saintome, C., Ourliac-Garnier, I., Riou, J. F., and Londono-Vallejo, A. (2009) Human POT1 is required for efficient telomere C-rich strand replication in the absence of WRN, Genes Dev 23, 2915ā€“2924.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  22. Bailey, S. M., Goodwin, E. H., and Cornforth, M. N. (2004) Strand-specific fluorescence in situ hybridization: the CO-FISH family, Cytogenet Genome Res 107, 14ā€“17.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  23. Arnoult, N., Shin-Ya, K., and Londono-Vallejo, J. A. (2008) Studying telomere replication by Q-CO-FISH: the effect of telomestatin, a potent G-quadruplex ligand, Cytogenet Genome Res 122, 229ā€“236.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  24. Poon, S. S., Martens, U. M., Ward, R. K., and Lansdorp, P. M. (1999) Telomere length measurements using digital fluorescence microscopy, Cytometry 36, 267ā€“278.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgments

Work in the LondoƱo laboratory is supported by ā€œLa Ligue contre le Cancer,ā€ the ā€œFondation pour la Recherche Medicale, FRM,ā€ the ā€œAssociation pour la Recherche sur le Cancer, ARC.ā€ I. O-G. is the recipient of a post-doctoral fellowship from Agence Nationale de la Recherche (ANR) and ARC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo LondoƱo-Vallejo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ourliac-Garnier, I., LondoƱo-Vallejo, A. (2011). Telomere Strand-Specific Length Analysis by Fluorescent In Situ Hybridization (Q-CO-FISH). In: Songyang, Z. (eds) Telomeres and Telomerase. Methods in Molecular Biology, vol 735. Humana Press. https://doi.org/10.1007/978-1-61779-092-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-092-8_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-091-1

  • Online ISBN: 978-1-61779-092-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics