Skip to main content

Target-Enrichment Through Amplification of Hairpin-Ligated Universal Targets for Next-Generation Sequencing Analysis

  • Protocol
  • First Online:
High-Throughput Next Generation Sequencing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 733))

Abstract

With rapid development of next-generation sequencing (NGS) technologies, it is becoming increasingly feasible to sequence entire genomes of various organisms from virus to human. However, in many occasions, it is still more practical to sequence and analyze only small regions of the entire genome that are informative for the purpose of the experiment. Although many target-enrichment or target capture methods exist, each method has its own strength and weakness in terms of the number of enriched targets, specificity, drop-off rate, and uniformity in capturing target DNA sequences. Many applications require a consistently low drop-off rate and high uniformity of enriched targets for routine collection of meaningful data. Here, we describe a simple and robust PCR-based protocol that can allow simultaneous amplification of numerous target regions. This method employs target-specific hairpin selectors to create DNA templates that contain target regions flanked by common universal priming sequences. We demonstrated the utility of this method by applying it for simultaneous amplification of 21 targets in the range of 191–604 bp from 41 different Salmonella strains using bar-coded universal primers. Analysis of 454 FLX pyrosequencing data demonstrated the promising performance of this method in terms of specificity and uniformity. This method, with great potential for robust amplification of hundreds of targets, should find broad applications for efficient analysis of multiple genomic targets for various experimental goals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Metzker, M. L. (2010) Sequencing ­technologies – the next generation. Nat. Rev. Genet. 11, 31–46.

    Article  PubMed  CAS  Google Scholar 

  2. Mamanova, L., Coffey, A. J., Scott, C. E., Kozarewa, I., Turner, E. H., Kumar, A., Howard, E., Shendure, J., and Turner, D. J. (2010) Target-enrichment strategies for next-generation sequencing. Nat. Methods 7, 111–118.

    Article  PubMed  CAS  Google Scholar 

  3. Dahl, F., Stenberg, J., Fredriksson, S., Welch, K., Zhang, M., Nilsson, M., Bicknell, D., Bodmer, W. F., Davis, R. W., and Ji, H. (2007) Multigene amplification and massively parallel sequencing for cancer mutation discovery. Proc. Natl. Acad. Sci. USA. 104, 9387–9392.

    Article  PubMed  CAS  Google Scholar 

  4. Varley, K. E., and Mitra, R. D. (2008) Nested Patch PCR enables highly multiplexed mutation discovery in candidate genes. Genome Res. 18, 1844–1850.

    Article  PubMed  CAS  Google Scholar 

  5. Kotetishvili, M., Stine, O. C., Kreger, A., Morris, J. G. Jr, and Sulakvelidze, A.(2002) Multilocus sequence typing for characterization of clinical and environmental salmonella strains. J Clin Microbiol. 40, 1626–1635.

    Article  PubMed  CAS  Google Scholar 

  6. Sukhnanand, S., Alcaine, S., Warnick, L. D., Su, W. L., Hof, J., Craver, M. P., McDonough, P., Boor, K. J., and Wiedmann, M. (2005) DNA sequence-based subtyping and ­evolutionary analysis of selected Salmonella enterica serotypes. J Clin Microbiol. 43, 3688–3698.

    Article  PubMed  CAS  Google Scholar 

  7. Tankouo-Sandjong, B., Sessitsch, A., Liebana, E., Kornschober, C., Allerberger, F., Hächler, H., and Bodrossy, L. (2007) MLST-v, multilocus sequence typing based on virulence genes, for molecular typing of Salmonella enterica subsp. enterica serovars. J Microbiol Methods. 69, 23–36.

    Google Scholar 

Download references

Acknowledgments

This research was supported by the USDA Food Safety Consor­tium grant.

Disclaimer The views expressed in this manuscript do not necessarily reflect those of the US Food and Drug Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Min Kwon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Singh, P., Nayak, R., Kwon, Y.M. (2011). Target-Enrichment Through Amplification of Hairpin-Ligated Universal Targets for Next-Generation Sequencing Analysis. In: Kwon, Y., Ricke, S. (eds) High-Throughput Next Generation Sequencing. Methods in Molecular Biology, vol 733. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-089-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-089-8_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-088-1

  • Online ISBN: 978-1-61779-089-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics