Skip to main content

Luminescence as a Continuous Real-Time Reporter of Promoter Activity in Yeast Undergoing Respiratory Oscillations or Cell Division Rhythms

  • Protocol
  • First Online:
Yeast Genetic Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 734))

Abstract

This chapter describes a method for generating yeast respiratory oscillations in continuous culture and monitoring rhythmic promoter activity of the culture by automated real-time recording of luminescence. These techniques chiefly require the use of a strain of Saccharomyces cerevisiae that has been genetically modified to express firefly luciferase under the control of a promoter of interest and a continuous culture bioreactor that incorporates a photomultiplier apparatus for detecting light emission. Additionally, this chapter describes a method for observing rhythmic (cell cycle-related) promoter activity in small batch cultures of yeast through luminescence monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yamazaki, S., Numano, R., Abe, M., Hida, A., Takahashi, R., Ueda, M., Block, G. D., Sakaki, Y., Menaker, M., and Tei, H. (2000) Resetting central and peripheral circadian oscillators in transgenic rats, Science 288, 682–685.

    Google Scholar 

  2. Izumo, M., Sato, T. R., Straume, M., and Johnson, C. H. (2006) Quantitative analyses of circadian gene expression in mammalian cell cultures, PLoS Comput Biol 2, e136.

    Google Scholar 

  3. Brandes, C., Plautz, J. D., Stanewsky, R., Jamison, C. F., Straume, M., Wood, K. V., Kay, S. A., and Hall, J. C. (1996) Novel features of drosophila period Transcription revealed by real-time luciferase reporting, Neuron 16, 687–692.

    Google Scholar 

  4. Millar, A. J., Short, S. R., Chua, N. H., and Kay, S. A. (1992) A novel circadian phenotype based on firefly luciferase expression in transgenic plants, Plant Cell 4, 1075–1087.

    Google Scholar 

  5. Gooch, V. D., Mehra, A., Larrondo, L. F., Fox, J., Touroutoutoudis, M., Loros, J. J., and Dunlap, J. C. (2008) Fully codon-optimized luciferase uncovers novel temperature characteristics of the Neurospora clock, Eukaryot Cell 7, 28–37.

    Google Scholar 

  6. Robertson, J. B., Stowers, C. C., Boczko, E., and Johnson, C. H. (2008) Real-time luminescence monitoring of cell-cycle and respiratory oscillations in yeast, Proc Natl Acad Sci U S A 105, 17988–17993.

    Google Scholar 

  7. Thompson, J. F., Hayes, L. S., and Lloyd, D.B. (1991) Modulation of firefly luciferase stability and impact on studies of gene regulation, Gene 103, 171–177.

    Google Scholar 

  8. Mateus, C., and Avery, S. V. (2000) Destabilized green fluorescent protein for monitoring dynamic changes in yeast gene expression with flow cytometry, Yeast 16, 1313–1323.

    Google Scholar 

  9. Brauer, M. J., Saldanha, A. J., Dolinski, K., and Botstein, D. (2005) Homeostatic adjustment and metabolic remodeling in glucose-limited yeast cultures, Mol Biol Cell 16, 2503–2517.

    Google Scholar 

  10. Hoskisson, P. A., and Hobbs, G. (2005) Continuous culture--making a comeback?, Microbiology 151, 3153–3159.

    Google Scholar 

  11. Zamamiri, A. Q., Birol, G., and Hjortso, M. A. (2001) Multiple stable states and hysteresis in continuous, oscillating cultures of budding yeast, Biotechnol Bioeng 75, 305–312.

    Google Scholar 

  12. Murray, D. B., Engelen, F. A., Keulers, M., Kuriyama, H., and Lloyd, D. (1998) NO+, but not NO., inhibits respiratory oscillations in ethanol-grown chemostat cultures of Saccharomyces cerevisiae, FEBS Lett 431, 297–299.

    Google Scholar 

  13. Tu, B. P., Kudlicki, A., Rowicka, M., and McKnight, S. L. (2005) Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes, Science 310, 1152–1158.

    Google Scholar 

  14. Xu, Z., and Tsurugi, K. (2006) A potential mechanism of energy-metabolism oscillation in an aerobic chemostat culture of the yeast Saccharomyces cerevisiae, FEBS J 273, 1696–1709.

    Google Scholar 

  15. Klevecz, R. R., Bolen, J., Forrest, G., and Murray, D. B. (2004) A genomewide oscillation in transcription gates DNA replication and cell cycle, Proc Natl Acad Sci U S A 101, 1200–1205.

    Google Scholar 

  16. Futcher, B. (1999) Cell cycle synchronization, Methods Cell Sci 21, 79–86.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Hirschie Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Robertson, J.B., Johnson, C.H. (2011). Luminescence as a Continuous Real-Time Reporter of Promoter Activity in Yeast Undergoing Respiratory Oscillations or Cell Division Rhythms. In: Becskei, A. (eds) Yeast Genetic Networks. Methods in Molecular Biology, vol 734. Humana Press. https://doi.org/10.1007/978-1-61779-086-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-086-7_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-085-0

  • Online ISBN: 978-1-61779-086-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics