Advertisement

Protocols for Use of Homologous Recombination Gene Targeting to Produce MicroRNA Mutants in Drosophila

  • Ya-Wen ChenEmail author
  • Ruifen Weng
  • Stephen M. Cohen
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 732)

Abstract

MicroRNAs (miRNAs) are noncoding RNA molecules that have come to attract considerable interest for their roles in animal and plant development and disease. One means to study miRNA function in animal development is to create mutations. Use of gene-targeting strategies based on ends-out homologous recombination is a useful approach to produce mutations of desired structure, and is gaining popularity for producing miRNA knockouts. Here we present a detailed protocol for miRNA gene targeting and for their subsequent molecular characterization as well as confirmation by rescue. The descriptions of a series of modified vectors designed to facilitate the analysis of miRNA function are included, and a method to manipulate the mutant genome using recombinase-mediated cassette exchange.

Key words

MicroRNA Drosophila Gene targeting Homologous recombination φC31 integrase Recombinase-mediated cassette exchange 

Notes

Acknowledgments

We thank Rubing Liu, Hai Hwee Tay, Kah Junn Tan, and Yoke Ping Gum for technical support. Susan from Genetic Services Inc. provided injection services ably and with patience when needed. Natascha Bushati and Boris Bryk helped by sharing their experiences in generating miRNA knockouts. We thank Dr. Pernille Rorth for providing hs-Cre strains. This work has been supported by EU-FP6 grant “Sirocco” LSHG-CT-2006-037900, Singapore National Research Foundation under CRP Award No. NRF-CRP3-2008-03, and Temasek Life Sciences Laboratory. Ruifen Weng is a recipient of a Singapore Millennium Foundation Scholarship.

References

  1. 1.
    Bartel, D. P. (2009) MicroRNAs: target recognition and regulatory functions. Cell 136, 215–33.PubMedCrossRefGoogle Scholar
  2. 2.
    Flynt, A. S., and Lai, E. C. (2008) Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet 9, 831–42.PubMedCrossRefGoogle Scholar
  3. 3.
    Bushati, N., and Cohen, S. M. (2007) microRNA functions. Annu Rev Cell Dev Biol 23, 175–205.PubMedCrossRefGoogle Scholar
  4. 4.
    Lee, R. C., Feinbaum, R. L., and Ambros, V. (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–54.Google Scholar
  5. 5.
    Wightman, B., Ha, I., and Ruvkun, G. (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–62.Google Scholar
  6. 6.
    Rorth, P., Szabo, K., Bailey, A., Laverty, T., Rehm, J., Rubin, G. M., Weigmann, K., Milan, M., Benes, V., Ansorge, W., and Cohen, S. M. (1998) Systematic gain-of-function genetics in Drosophila. Development 125, 1049–57.PubMedGoogle Scholar
  7. 7.
    Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B., and Cohen, S. M. (2003) bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113, 25–36.PubMedCrossRefGoogle Scholar
  8. 8.
    Xu, P., Vernooy, S. Y., Guo, M., and Hay, B. A. (2003) The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 13, 790–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Li, X., and Carthew, R. W. (2005) A microRNA mediates EGF receptor signaling and promotes photoreceptor differentiation in the Drosophila eye. Cell 123, 1267–77.PubMedCrossRefGoogle Scholar
  10. 10.
    Karres, J. S., Hilgers, V., Carrera, I., Treisman, J., and Cohen, S. M. (2007) The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila. Cell 131, 136–45.PubMedCrossRefGoogle Scholar
  11. 11.
    Ketting, R. F., Fischer, S. E., Bernstein, E., Sijen, T., Hannon, G. J., and Plasterk, R. H. (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15, 2654–9.Google Scholar
  12. 12.
    Knight, S. W., and Bass, B. L. (2001) A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293, 2269–71.PubMedCrossRefGoogle Scholar
  13. 13.
    Grishok, A., Pasquinelli, A. E., Conte, D., Li, N., Parrish, S., Ha, I., Baillie, D. L., Fire, A., Ruvkun, G., and Mello, C. C. (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106, 23–34.Google Scholar
  14. 14.
    Hatfield, S. D., Shcherbata, H. R., Fischer, K. A., Nakahara, K., Carthew, R. W., and Ruohola-Baker, H. (2005) Stem cell division is regulated by the microRNA pathway. Nature 435, 974–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Jin, Z., and Xie, T. (2007) Dcr-1 maintains Drosophila ovarian stem cells. Curr Biol 17, 539–44.PubMedCrossRefGoogle Scholar
  16. 16.
    Wienholds, E., Koudijs, M. J., van Eeden, F. J., Cuppen, E., and Plasterk, R. H. (2003) The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nat Genet 35, 217–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Murchison, E. P., Partridge, J. F., Tam, O. H., Cheloufi, S., and Hannon, G. J. (2005) Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci USA 102, 12135–40.PubMedCrossRefGoogle Scholar
  18. 18.
    Kanellopoulou, C., Muljo, S. A., Kung, A. L., Ganesan, S., Drapkin, R., Jenuwein, T., Livingston, D. M., and Rajewsky, K. (2005) Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 19, 489–501.PubMedCrossRefGoogle Scholar
  19. 19.
    Cayirlioglu, P., Kadow, I. G., Zhan, X., Okamura, K., Suh, G. S., Gunning, D., Lai, E. C., and Zipursky, S. L. (2008) Hybrid neurons in a microRNA mutant are putative evolutionary intermediates in insect CO2 sensory systems. Science 319, 1256–60.PubMedCrossRefGoogle Scholar
  20. 20.
    Robertson, H. M., Preston, C. R., Phillis, R. W., Johnson-Schlitz, D. M., Benz, W. K., and Engels, W. R. (1988) A stable genomic source of P element transposase in Drosophila melanogaster. Genetics 118, 461–70.PubMedGoogle Scholar
  21. 21.
    Preston, C. R., Sved, J. A., and Engels, W. R. (1996) Flanking duplications and deletions associated with P-induced male recombination in Drosophila. Genetics 144, 1623–38.PubMedGoogle Scholar
  22. 22.
    Rong, Y. S., and Golic, K. G. (2000) Gene targeting by homologous recombination in Drosophila. Science 288, 2013–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Rong, Y. S., and Golic, K. G. (2001) A targeted gene knockout in Drosophila. Genetics 157, 1307–12.PubMedGoogle Scholar
  24. 24.
    Rong, Y. S., Titen, S. W., Xie, H. B., Golic, M. M., Bastiani, M., Bandyopadhyay, P., Olivera, B. M., Brodsky, M., Rubin, G. M., and Golic, K. G. (2002) Targeted mutagenesis by homologous recombination in D. melanogaster. Genes Dev 16, 1568–81.Google Scholar
  25. 25.
    Gong, W. J., and Golic, K. G. (2003) Ends-out, or replacement, gene targeting in Drosophila. Proc Natl Acad Sci USA 100, 2556–61.PubMedCrossRefGoogle Scholar
  26. 26.
    Gong, W. J., and Golic, K. G. (2004) Genomic deletions of the Drosophila melanogaster Hsp70 genes. Genetics 168, 1467–76.PubMedCrossRefGoogle Scholar
  27. 27.
    Xie, H. B., and Golic, K. G. (2004) Gene deletions by ends-in targeting in Drosophila melanogaster. Genetics 168, 1477–89.PubMedCrossRefGoogle Scholar
  28. 28.
    Sokol, N. S., and Ambros, V. (2005) Mesodermally expressed Drosophila micro­RNA-1 is regulated by Twist and is required in muscles during larval growth. Genes Dev 19, 2343–54.PubMedCrossRefGoogle Scholar
  29. 29.
    Teleman, A. A., Maitra, S., and Cohen, S. M. (2006) Drosophila lacking microRNA miR-278 are defective in energy homeostasis. Genes Dev 20, 417–22.PubMedCrossRefGoogle Scholar
  30. 30.
    Li, Y., Wang, F., Lee, J. A., and Gao, F. B. (2006) MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila. Genes Dev 20, 2793–805.PubMedCrossRefGoogle Scholar
  31. 31.
    Bushati, N., Stark, A., Brennecke, J., and Cohen, S. M. (2008) Temporal reciprocity of miRNAs and their targets during the maternal-to-zygotic transition in Drosophila. Curr Biol 18, 501–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Friggi-Grelin, F., Lavenant-Staccini, L., and Therond, P. (2008) Control of antagonistic components of the hedgehog signaling pathway by microRNAs in Drosophila. Genetics 179, 429–39.PubMedCrossRefGoogle Scholar
  33. 33.
    Sokol, N. S., Xu, P., Jan, Y. N., and Ambros, V. (2008) Drosophila let-7 microRNA is required for remodeling of the neuromusculature during metamorphosis. Genes Dev 22, 1591–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Maggert, K. A., Gong, W. J., and Golic, K. G. (2008) Methods for homologous recombination in Drosophila. Methods Mol Biol 420, 155–74.PubMedCrossRefGoogle Scholar
  35. 35.
    Gao, G., McMahon, C., Chen, J., and Rong, Y. S. (2008) A powerful method combining homologous recombination and site-specific recombination for targeted mutagenesis in Drosophila. Proc Natl Acad Sci USA 105, 13999–4004.PubMedCrossRefGoogle Scholar
  36. 36.
    Choi, C. M., Vilain, S., Langen, M., Van Kelst, S., De Geest, N., Yan, J., Verstreken, P., and Hassan, B. A. (2009) Conditional mutagenesis in Drosophila. Science 324, 54.PubMedCrossRefGoogle Scholar
  37. 37.
    Weng, R., Chen, Y. W., Bushati, N., Cliffe, A., and Cohen, S. M. (2009) Recombinase-mediated cassette exchange provides a versatile platform for gene targeting: knockout of miR-31b. Genetics 183, 399–402.PubMedCrossRefGoogle Scholar
  38. 38.
    Bateman, J. R., Lee, A. M., and Wu, C. T. (2006) Site-specific transformation of Drosophila via phiC31 integrase-mediated cassette exchange. Genetics 173, 769–77.PubMedCrossRefGoogle Scholar
  39. 39.
    Bischof, J., Maeda, R. K., Hediger, M., Karch, F., and Basler, K. (2007) An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci USA 104, 3312–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Markstein, M., Pitsouli, C., Villalta, C., Celniker, S. E., and Perrimon, N. (2008) Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nat Genet 40, 476–83.PubMedCrossRefGoogle Scholar
  41. 41.
    Groth, A. C., Fish, M., Nusse, R., and Calos, M. P. (2004) Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 166, 1775–82.PubMedCrossRefGoogle Scholar
  42. 42.
    Gloor, G. B., Preston, C. R., Johnson-Schlitz, D. M., Nassif, N. A., Phillis, R. W., Benz, W. K., Robertson, H. M., and Engels, W. R. (1993) Type I repressors of P element mobility. Genetics 135, 81–95.PubMedGoogle Scholar
  43. 43.
    Siegal, M. L., and Hartl, D. L. (1996) Transgene Coplacement and high efficiency site-specific recombination with the Cre/loxP system in Drosophila. Genetics 144, 715–26.PubMedGoogle Scholar
  44. 44.
    Venken, K. J., He, Y., Hoskins, R. A., and Bellen, H. J. (2006) P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science 314, 1747–51.Google Scholar
  45. 45.
    Spradling, A. C. (1986) P element-mediated transformation in “Drosophila: a practical approach” (Roberts, D. B., Ed.), pp. 175–97, IRL Press Limited, Oxford, England.Google Scholar
  46. 46.
    Kuhstoss, S., and Rao, R. N. (1991) Analysis of the integration function of the streptomycete bacteriophage phi C31. J Mol Biol 222, 897–908.PubMedCrossRefGoogle Scholar
  47. 47.
    Rausch, H., and Lehmann, M. (1991) Structural analysis of the actinophage phi C31 attachment site. Nucleic Acids Res 19, 5187–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Thorpe, H. M., Wilson, S. E., and Smith, M. C. (2000) Control of directionality in the site-specific recombination system of the Streptomyces phage phiC31. Mol Microbiol 38, 232–41.PubMedCrossRefGoogle Scholar
  49. 49.
    Klemenz, R., Weber, U., and Gehring, W. J. (1987) The white gene as a marker in a new P-element vector for gene transfer in Drosophila. Nucleic Acids Res 15, 3947–59.PubMedCrossRefGoogle Scholar
  50. 50.
    Ruby, J. G., Jan, C. H., and Bartel, D. P. (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448, 83–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Okamura, K., Hagen, J. W., Duan, H., Tyler, D. M., and Lai, E. C. (2007) The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130, 89–100.PubMedCrossRefGoogle Scholar
  52. 52.
    Li, M. Z., and Elledge, S. J. (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods 4, 251–6.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2011

Authors and Affiliations

  1. 1.Institute of Molecular and Cell BiologySingaporeSingapore

Personalised recommendations