Skip to main content

Protocols for Use of Homologous Recombination Gene Targeting to Produce MicroRNA Mutants in Drosophila

  • Protocol
  • First Online:
MicroRNAs in Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 732))

Abstract

MicroRNAs (miRNAs) are noncoding RNA molecules that have come to attract considerable interest for their roles in animal and plant development and disease. One means to study miRNA function in animal development is to create mutations. Use of gene-targeting strategies based on ends-out homologous recombination is a useful approach to produce mutations of desired structure, and is gaining popularity for producing miRNA knockouts. Here we present a detailed protocol for miRNA gene targeting and for their subsequent molecular characterization as well as confirmation by rescue. The descriptions of a series of modified vectors designed to facilitate the analysis of miRNA function are included, and a method to manipulate the mutant genome using recombinase-mediated cassette exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartel, D. P. (2009) MicroRNAs: target recognition and regulatory functions. Cell 136, 215–33.

    Article  PubMed  CAS  Google Scholar 

  2. Flynt, A. S., and Lai, E. C. (2008) Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet 9, 831–42.

    Article  PubMed  CAS  Google Scholar 

  3. Bushati, N., and Cohen, S. M. (2007) microRNA functions. Annu Rev Cell Dev Biol 23, 175–205.

    Article  PubMed  CAS  Google Scholar 

  4. Lee, R. C., Feinbaum, R. L., and Ambros, V. (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–54.

    Google Scholar 

  5. Wightman, B., Ha, I., and Ruvkun, G. (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–62.

    Google Scholar 

  6. Rorth, P., Szabo, K., Bailey, A., Laverty, T., Rehm, J., Rubin, G. M., Weigmann, K., Milan, M., Benes, V., Ansorge, W., and Cohen, S. M. (1998) Systematic gain-of-function genetics in Drosophila. Development 125, 1049–57.

    PubMed  CAS  Google Scholar 

  7. Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B., and Cohen, S. M. (2003) bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113, 25–36.

    Article  PubMed  CAS  Google Scholar 

  8. Xu, P., Vernooy, S. Y., Guo, M., and Hay, B. A. (2003) The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 13, 790–5.

    Article  PubMed  CAS  Google Scholar 

  9. Li, X., and Carthew, R. W. (2005) A microRNA mediates EGF receptor signaling and promotes photoreceptor differentiation in the Drosophila eye. Cell 123, 1267–77.

    Article  PubMed  CAS  Google Scholar 

  10. Karres, J. S., Hilgers, V., Carrera, I., Treisman, J., and Cohen, S. M. (2007) The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila. Cell 131, 136–45.

    Article  PubMed  CAS  Google Scholar 

  11. Ketting, R. F., Fischer, S. E., Bernstein, E., Sijen, T., Hannon, G. J., and Plasterk, R. H. (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15, 2654–9.

    Google Scholar 

  12. Knight, S. W., and Bass, B. L. (2001) A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293, 2269–71.

    Article  PubMed  CAS  Google Scholar 

  13. Grishok, A., Pasquinelli, A. E., Conte, D., Li, N., Parrish, S., Ha, I., Baillie, D. L., Fire, A., Ruvkun, G., and Mello, C. C. (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106, 23–34.

    Google Scholar 

  14. Hatfield, S. D., Shcherbata, H. R., Fischer, K. A., Nakahara, K., Carthew, R. W., and Ruohola-Baker, H. (2005) Stem cell division is regulated by the microRNA pathway. Nature 435, 974–8.

    Article  PubMed  CAS  Google Scholar 

  15. Jin, Z., and Xie, T. (2007) Dcr-1 maintains Drosophila ovarian stem cells. Curr Biol 17, 539–44.

    Article  PubMed  CAS  Google Scholar 

  16. Wienholds, E., Koudijs, M. J., van Eeden, F. J., Cuppen, E., and Plasterk, R. H. (2003) The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nat Genet 35, 217–8.

    Article  PubMed  CAS  Google Scholar 

  17. Murchison, E. P., Partridge, J. F., Tam, O. H., Cheloufi, S., and Hannon, G. J. (2005) Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci USA 102, 12135–40.

    Article  PubMed  CAS  Google Scholar 

  18. Kanellopoulou, C., Muljo, S. A., Kung, A. L., Ganesan, S., Drapkin, R., Jenuwein, T., Livingston, D. M., and Rajewsky, K. (2005) Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 19, 489–501.

    Article  PubMed  CAS  Google Scholar 

  19. Cayirlioglu, P., Kadow, I. G., Zhan, X., Okamura, K., Suh, G. S., Gunning, D., Lai, E. C., and Zipursky, S. L. (2008) Hybrid neurons in a microRNA mutant are putative evolutionary intermediates in insect CO2 sensory systems. Science 319, 1256–60.

    Article  PubMed  CAS  Google Scholar 

  20. Robertson, H. M., Preston, C. R., Phillis, R. W., Johnson-Schlitz, D. M., Benz, W. K., and Engels, W. R. (1988) A stable genomic source of P element transposase in Drosophila melanogaster. Genetics 118, 461–70.

    PubMed  CAS  Google Scholar 

  21. Preston, C. R., Sved, J. A., and Engels, W. R. (1996) Flanking duplications and deletions associated with P-induced male recombination in Drosophila. Genetics 144, 1623–38.

    PubMed  CAS  Google Scholar 

  22. Rong, Y. S., and Golic, K. G. (2000) Gene targeting by homologous recombination in Drosophila. Science 288, 2013–8.

    Article  PubMed  CAS  Google Scholar 

  23. Rong, Y. S., and Golic, K. G. (2001) A targeted gene knockout in Drosophila. Genetics 157, 1307–12.

    PubMed  CAS  Google Scholar 

  24. Rong, Y. S., Titen, S. W., Xie, H. B., Golic, M. M., Bastiani, M., Bandyopadhyay, P., Olivera, B. M., Brodsky, M., Rubin, G. M., and Golic, K. G. (2002) Targeted mutagenesis by homologous recombination in D. melanogaster. Genes Dev 16, 1568–81.

    Google Scholar 

  25. Gong, W. J., and Golic, K. G. (2003) Ends-out, or replacement, gene targeting in Drosophila. Proc Natl Acad Sci USA 100, 2556–61.

    Article  PubMed  CAS  Google Scholar 

  26. Gong, W. J., and Golic, K. G. (2004) Genomic deletions of the Drosophila melanogaster Hsp70 genes. Genetics 168, 1467–76.

    Article  PubMed  CAS  Google Scholar 

  27. Xie, H. B., and Golic, K. G. (2004) Gene deletions by ends-in targeting in Drosophila melanogaster. Genetics 168, 1477–89.

    Article  PubMed  CAS  Google Scholar 

  28. Sokol, N. S., and Ambros, V. (2005) Mesodermally expressed Drosophila micro­RNA-1 is regulated by Twist and is required in muscles during larval growth. Genes Dev 19, 2343–54.

    Article  PubMed  CAS  Google Scholar 

  29. Teleman, A. A., Maitra, S., and Cohen, S. M. (2006) Drosophila lacking microRNA miR-278 are defective in energy homeostasis. Genes Dev 20, 417–22.

    Article  PubMed  CAS  Google Scholar 

  30. Li, Y., Wang, F., Lee, J. A., and Gao, F. B. (2006) MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila. Genes Dev 20, 2793–805.

    Article  PubMed  CAS  Google Scholar 

  31. Bushati, N., Stark, A., Brennecke, J., and Cohen, S. M. (2008) Temporal reciprocity of miRNAs and their targets during the maternal-to-zygotic transition in Drosophila. Curr Biol 18, 501–6.

    Article  PubMed  CAS  Google Scholar 

  32. Friggi-Grelin, F., Lavenant-Staccini, L., and Therond, P. (2008) Control of antagonistic components of the hedgehog signaling pathway by microRNAs in Drosophila. Genetics 179, 429–39.

    Article  PubMed  CAS  Google Scholar 

  33. Sokol, N. S., Xu, P., Jan, Y. N., and Ambros, V. (2008) Drosophila let-7 microRNA is required for remodeling of the neuromusculature during metamorphosis. Genes Dev 22, 1591–6.

    Article  PubMed  CAS  Google Scholar 

  34. Maggert, K. A., Gong, W. J., and Golic, K. G. (2008) Methods for homologous recombination in Drosophila. Methods Mol Biol 420, 155–74.

    Article  PubMed  CAS  Google Scholar 

  35. Gao, G., McMahon, C., Chen, J., and Rong, Y. S. (2008) A powerful method combining homologous recombination and site-specific recombination for targeted mutagenesis in Drosophila. Proc Natl Acad Sci USA 105, 13999–4004.

    Article  PubMed  CAS  Google Scholar 

  36. Choi, C. M., Vilain, S., Langen, M., Van Kelst, S., De Geest, N., Yan, J., Verstreken, P., and Hassan, B. A. (2009) Conditional mutagenesis in Drosophila. Science 324, 54.

    Article  PubMed  CAS  Google Scholar 

  37. Weng, R., Chen, Y. W., Bushati, N., Cliffe, A., and Cohen, S. M. (2009) Recombinase-mediated cassette exchange provides a versatile platform for gene targeting: knockout of miR-31b. Genetics 183, 399–402.

    Article  PubMed  CAS  Google Scholar 

  38. Bateman, J. R., Lee, A. M., and Wu, C. T. (2006) Site-specific transformation of Drosophila via phiC31 integrase-mediated cassette exchange. Genetics 173, 769–77.

    Article  PubMed  CAS  Google Scholar 

  39. Bischof, J., Maeda, R. K., Hediger, M., Karch, F., and Basler, K. (2007) An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci USA 104, 3312–7.

    Article  PubMed  CAS  Google Scholar 

  40. Markstein, M., Pitsouli, C., Villalta, C., Celniker, S. E., and Perrimon, N. (2008) Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nat Genet 40, 476–83.

    Article  PubMed  CAS  Google Scholar 

  41. Groth, A. C., Fish, M., Nusse, R., and Calos, M. P. (2004) Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 166, 1775–82.

    Article  PubMed  CAS  Google Scholar 

  42. Gloor, G. B., Preston, C. R., Johnson-Schlitz, D. M., Nassif, N. A., Phillis, R. W., Benz, W. K., Robertson, H. M., and Engels, W. R. (1993) Type I repressors of P element mobility. Genetics 135, 81–95.

    PubMed  CAS  Google Scholar 

  43. Siegal, M. L., and Hartl, D. L. (1996) Transgene Coplacement and high efficiency site-specific recombination with the Cre/loxP system in Drosophila. Genetics 144, 715–26.

    PubMed  CAS  Google Scholar 

  44. Venken, K. J., He, Y., Hoskins, R. A., and Bellen, H. J. (2006) P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science 314, 1747–51.

    Google Scholar 

  45. Spradling, A. C. (1986) P element-mediated transformation in “Drosophila: a practical approach” (Roberts, D. B., Ed.), pp. 175–97, IRL Press Limited, Oxford, England.

    Google Scholar 

  46. Kuhstoss, S., and Rao, R. N. (1991) Analysis of the integration function of the streptomycete bacteriophage phi C31. J Mol Biol 222, 897–908.

    Article  PubMed  CAS  Google Scholar 

  47. Rausch, H., and Lehmann, M. (1991) Structural analysis of the actinophage phi C31 attachment site. Nucleic Acids Res 19, 5187–9.

    Article  PubMed  CAS  Google Scholar 

  48. Thorpe, H. M., Wilson, S. E., and Smith, M. C. (2000) Control of directionality in the site-specific recombination system of the Streptomyces phage phiC31. Mol Microbiol 38, 232–41.

    Article  PubMed  CAS  Google Scholar 

  49. Klemenz, R., Weber, U., and Gehring, W. J. (1987) The white gene as a marker in a new P-element vector for gene transfer in Drosophila. Nucleic Acids Res 15, 3947–59.

    Article  PubMed  CAS  Google Scholar 

  50. Ruby, J. G., Jan, C. H., and Bartel, D. P. (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448, 83–6.

    Article  PubMed  CAS  Google Scholar 

  51. Okamura, K., Hagen, J. W., Duan, H., Tyler, D. M., and Lai, E. C. (2007) The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130, 89–100.

    Article  PubMed  CAS  Google Scholar 

  52. Li, M. Z., and Elledge, S. J. (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods 4, 251–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Rubing Liu, Hai Hwee Tay, Kah Junn Tan, and Yoke Ping Gum for technical support. Susan from Genetic Services Inc. provided injection services ably and with patience when needed. Natascha Bushati and Boris Bryk helped by sharing their experiences in generating miRNA knockouts. We thank Dr. Pernille Rorth for providing hs-Cre strains. This work has been supported by EU-FP6 grant “Sirocco” LSHG-CT-2006-037900, Singapore National Research Foundation under CRP Award No. NRF-CRP3-2008-03, and Temasek Life Sciences Laboratory. Ruifen Weng is a recipient of a Singapore Millennium Foundation Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Wen Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Chen, YW., Weng, R., Cohen, S.M. (2011). Protocols for Use of Homologous Recombination Gene Targeting to Produce MicroRNA Mutants in Drosophila . In: Dalmay, T. (eds) MicroRNAs in Development. Methods in Molecular Biology, vol 732. Humana Press. https://doi.org/10.1007/978-1-61779-083-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-083-6_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-082-9

  • Online ISBN: 978-1-61779-083-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics