Skip to main content

Development of Rituximab-Resistant B-NHL Clones: An In Vitro Model for Studying Tumor Resistance to Monoclonal Antibody-Mediated Immunotherapy

  • Protocol
  • First Online:
Cancer Cell Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 731))

Abstract

Therapeutic strategies for cancer include chemotherapy, immunotherapy, and radiation. Such therapies result in significant short-term clinical responses; however, relapses and recurrences occur with no treatments. Targeted therapies using monoclonal antibodies have improved responses with minimal toxicities. For instance, Rituximab (chimeric anti-CD20 monoclonal antibody) was the first FDA-approved monoclonal antibody for the treatment of patients with non-Hodgkin’s lymphoma (NHL). The clinical response was significantly improved when used in combination with chemotherapy. However, a subset of patients does not respond or becomes resistant to further treatment. Rituximab-resistant (RR) clones were used as a model to address the potential mechanisms of resistance. In this chapter, we discuss the underlying molecular mechanisms by which rituximab signals the cells and modifies several intracellular survival/antiapoptotic pathways, leading to its chemo/immunosensitizing activities. RR clones were developed to mimic in vivo resistance observed in patients. In comparison with the sensitive parental cells, the RR clones are refractory to rituximab-mediated cell signaling and chemosensitization. Noteworthy, interference with the hyperactivated survival/antiapoptotic pathways in the RR clones with various pharmacological inhibitors mimicked rituximab effects in the parental cells. The development of RR clones provides a paradigm for studying resistance by other anticancer monoclonal antibodies in various tumor models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2MAM-A3:

2-Methoxyantimycin-A3

ADCC:

Antibody-dependent cell-mediated cytotoxicity

AP-1:

Activator protein-1

ARL:

Acquired immunodeficiency syndrome (AIDS)-related lymphoma

Bcl-2:

B-cell lymphoma protein 2

Bcl-xL :

Bcl-2 related gene (long alternatively spliced variant of Bcl-x gene)

CDC:

Complement-dependent cytotoxicity

DHMEQ:

Dehydroxymethylepoxyquinomicin

DLBCL:

Diffuse large B-cell lymphoma

ERK1/2 MAPK:

Extracellular signal-regulated kinase1/2 mitogen activated protein kinase

FACS:

Fluorescence-activated cell sorter

IKK:

Inhibitor of kappa B (IκB) kinase complex

Mcl-1:

Myeloid cell differentiation 1

RKIP:

Raf-1 kinase inhibitor protein

References

  1. Coiffier, B., Pfreundschuh, M., Stahel, R., Vose, J., and Zinzani, P.L. (2002) Aggressive lymphoma: improving treatment outcome with rituximab. Anticancer Drugs 2, S43–50.

    Article  Google Scholar 

  2. Andeson, K.C., Bates, M.P., Slaughenhoupt, B.L., Pinkus, G.S., Schlossman, S.F., and Nadler L.M. (1984) Expression of human B cell-associated antigens on leukemias and lymphomas: a model of human B cell differentiation. Blood 63, 1424–33.

    Google Scholar 

  3. Press, O.W., Appelbaum, F., Ledbetter, J.A., et al. (1987) Monoclonal antibody 1F5 (anti-CD20) serotherapy of human B cell lymphomas. Blood 69, 584–91.

    PubMed  CAS  Google Scholar 

  4. Einfeld, D.A., Brown, J.P., Valentine, M.A., Clark, E.A., and Ledbetter, J.A. (1988) Molecular cloning of the human B cell CD20 receptor predicts a hydrophobic protein with multiple transmembrane domains. EMBO J 7, 711–7.

    PubMed  CAS  Google Scholar 

  5. Grillo-Lopez, A.J. (2002) Monoclonal antibody therapy for B-cell lymphoma. Int J Hematol 76, 385–93.

    Article  PubMed  CAS  Google Scholar 

  6. Alas, S., Emmanouilides, C., and Bonavida, B. (2001) Inhibition of interleukin 10 by rituximab results in down-regulation of Bcl-2 and sensitization of B-cell non-Hodgkin’s lymphoma to apoptosis. Clin Cancer Res 3, 709–723.

    Google Scholar 

  7. Alas, S., and Bonavida B. (2003) Inhibition of constitutive STAT3 activity sensitizes resistant non-Hodgkin’s lymphoma and multiple myeloma to chemotherapeutic drug-mediated apoptosis. Clin Cancer Res 1, 316–326.

    Google Scholar 

  8. Jazirehi, A.R., Gan, X-H., De Vos, S., Emmanouilides, C., and Bonavida, B. (2003) Rituximab (anti-CD20) selectively modifies Bcl-xL and Apaf-1 expression and sensitizes human non-Hodgkin’s lymphoma B cell lines to paclitaxel-induced apoptosis. Mol Cancer Ther 2, 1183–93.

    PubMed  CAS  Google Scholar 

  9. Jazirehi, A.R., Vega, M., Chatterjee, D., Goodglick, L., and Bonavida, B. (2004) Inhibition of the Raf-MEK1/2-ERK1/2 signaling pathway, Bcl-xL down-regulation, and chemo-sensitization of non-Hodgkin’s lymphoma B-cells by Rituximab. Cancer Res 64, 7117–26.

    Article  PubMed  CAS  Google Scholar 

  10. Jazirehi, A.R., Huerta, S., Cheng, G., and Bonavida, B. (2005) Rituximab (chimeric anti -CD20 mAb) inhibits the constitutive NF-κB signaling pathway in non-Hodgkin’s lymphoma (NHL) B-cell lines: role in sensitization to chemotherapeutic drug-induced apoptosis. Cancer Res 65, 264–76.

    PubMed  CAS  Google Scholar 

  11. Vega, M.I., Huerta-Yepaz, S., Garban, H., Jazirehi, A.R., Emmanouilides, C., and Bonavida B. (2004) Rituximab inhibits p38 MAPK activity in 2F7 B NHL and decreases IL-10 transcription: pivotal role of p38 MAPK in drug resistance. Oncogene 23, 3530–3540.

    Article  PubMed  CAS  Google Scholar 

  12. Vega, M.I., Martinez-Paniagua, M., Jazirehi, A.R., Huerta-Yepez, S., Umezawa, K., Martinez-Maza, O., and Bonavida, B. (2008) The NF-kappaB inhibitors (bortezomib and DHMEQ) sensitise rituximab-resistant AIDS-B-non-Hodgkin lymphoma to apoptosis by various chemotherapeutic drugs. Leuk Lymphoma 10, 1982–94.

    Article  Google Scholar 

  13. Czuczman, M.S., Fallon, A., Mohr, A., Stewart, C., Bernstein, Z.P., McCarthy, P., et al. (2002) Rituximab in combination with CHOP or fludarabine in low-grade lymphoma. Semin Oncol 1, 36–40.

    Article  Google Scholar 

  14. Coiffier, B., Haioun, C., Ketterer, N., Engert, A., Tilly, H., Ma D, et al. (1998) Rituximab (anti-CD20 monoclonal antibody) for the treatment of patients with relapsing or refractory aggressive lymphoma: a multicenter phase II study. Blood 92, 1927–1932.

    PubMed  CAS  Google Scholar 

  15. Maloney, D.G. (2005) Immunotherapy for non-Hodgkin’s lymphoma: monoclonal antibodies and vaccines. J Clin Oncol 23, 6421–8.

    Article  PubMed  CAS  Google Scholar 

  16. Jazirehi, A.R., and Bonavida, B. (2005) Molecular and cellular signal transduction pathways modulated by rituximab (rituxan, anti-CD20 mAb) in non-Hodgkin’s lymphoma: mplications in chemo-sensitization and therapeutic. Oncogene 24, 2121–43.

    Article  PubMed  CAS  Google Scholar 

  17. Tzung, S-P., Kim, C.M., Basanez, G., et al. (2001) Antimycin A mimics a cell death-inducing Bcl-2 homology domain 3. Nat Cell Biol 3, 183–91.

    Article  PubMed  CAS  Google Scholar 

  18. Reff, M.E., Carner, K., Chambers, K.S., et al. (1994) Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 83, 435–5.

    PubMed  CAS  Google Scholar 

  19. McLaughlin, P., Grillo-Lopez, A.J., Link, B.K., Levy, R., Czuczman, M.S., Williams, M.E., et al. (1998) Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol 16, 2825–2833.

    PubMed  CAS  Google Scholar 

  20. Pickartz, T., Ringel, F., Wedde, M., Renz, H., Klein, A., von, N.N., et al. (2001) Selection of B-cell chronic lymphocytic leukemia cell variants by therapy with anti-CD20 monoclonal antibody rituximab. Exp Hematol 12: 1410–1416.

    Google Scholar 

  21. Bezombes, C., Grazide, S., Garret, C., et al. (2004) Rituximab antiproliferative effect in B-lymphoma cells is associated with acid-sphingomyelinase activation in raft microdomains. Blood 104, 1166–73.

    Article  PubMed  CAS  Google Scholar 

  22. Treon, S.P., Mitsiades, C., Mitsiades, N., Young, G., Doss, D., Schlossman, R., et al. (2001) Tumor cell expression of CD59 is associated with resistance to CD20 serotherapy in patients with B-Cell malignancies. J Immunother 24, 263–271.

    Article  CAS  Google Scholar 

  23. Weng, W.K., and Levy, R. (2001) Expression of complement inhibitors CD46, CD55, and CD59 on tumor cells does not predict clinical outcome after rituximab treatment in follicular non-Hodgkin lymphoma. Blood 98, 1352–1357.

    Article  PubMed  CAS  Google Scholar 

  24. Jazirehi, A.R., Vega, M.I., and Bonavida, B. (2007) Development of rituximab-resistant lymphoma clones with altered cell signaling and cross-resistance to chemotherapy. Cancer Res 67, 1270–81.

    Article  PubMed  CAS  Google Scholar 

  25. Manshouri, T., Do, K.A., Wang, X., et al. (2003) Circulating CD20 is detectable in the plasma of patients with chronic lymphocytic leukemia and is of prognostic significance. Blood 101, 2507–13.

    Article  PubMed  CAS  Google Scholar 

  26. Pommier, Y., Sordet, O., Antony, S., Hayward, R.L., and Kohn, K.W. (2004) Apoptosis defects and chemo-therapy resistance: molecular interaction maps and networks. Oncogene 23, 2934–4.

    Article  PubMed  CAS  Google Scholar 

  27. O’Connor, O.A., Wright, J., Moskowitz, C., et al. (2005) Phase II clinical experience with the novel proteasome inhibitor bortezomib in patients with indolent non-Hodgkin’s lymphoma and mantle cell lymphoma. J Clin Oncol 23, 676–84.

    Article  PubMed  Google Scholar 

  28. Ariga, A., Namekawa, J., Matsumoto, N., Inoue, J., and Umezawa, K. (2002) Inhibition of tumor necrosis factor--induced nuclear translocation and activation of NF-B by dehydroxymethylepoxyquino- micin. J Biol Chem 277, 24626–30.

    Google Scholar 

  29. Kikuchi, E., Horiguhi, Y., Nakashima, J., et al. (2003) Suppression of hormone-refractory prostate cancer by a novel nuclear factor B inhibitor in nude mice. Cancer Res 63, 107–10.

    PubMed  CAS  Google Scholar 

  30. Alessi, D.R., Cuenda, A., Cohen, P., Dudley, D.T., and Saltiel, A.R. (1995) PD098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem 270, 27489–94.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali R. Jazirehi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jazirehi, A.R., Bonavida, B. (2011). Development of Rituximab-Resistant B-NHL Clones: An In Vitro Model for Studying Tumor Resistance to Monoclonal Antibody-Mediated Immunotherapy. In: Cree, I. (eds) Cancer Cell Culture. Methods in Molecular Biology, vol 731. Humana Press. https://doi.org/10.1007/978-1-61779-080-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-080-5_33

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-079-9

  • Online ISBN: 978-1-61779-080-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics