Skip to main content

Angiogenesis Assays

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 731))

Abstract

The angiogenic process is central in the pathogenesis of various diseases. The in vitro and in vivo monitoring of the neovascular process is essential for the development and evaluation of angiogenesis inhibitors or stimulators. Since no single method exists that can assess angiogenesis in a robust, reliable, and reproducible fashion, researchers often use a combination of assays to circumvent this problem. The experimental details of the most commonly in vitro, ex vivo, and in vivo assays are presented here.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Carmeliet, P. and Jain R.K. (2000) Angiogenesis in cancer and other diseases. Nature 407, 249–257.

    Article  PubMed  CAS  Google Scholar 

  2. Carolyn A. Staton, Malcolm W. R. Reed and Nicola J. Brown. (2009) A critical analysis of current in vitro and in vivo angiogenesis assays. Int. J. Exp. Path. 90, 195–221.

    Google Scholar 

  3. Bishop, E.T., Bell, G.T., Bloor, S. Broom, I.J., Hendry, N.F., and Wheatley, D.N. (1999) An in vitro model of angiogenesis : basic features. Angiogenesis 3, 335–344.

    Article  PubMed  CAS  Google Scholar 

  4. Donovan, D., Brown, N.J., Bishop, E.T., Lewis C.E. (2001) Comparison of three in vitro human “angiogenesis” assays with capillaries formed in vivo, Angiogenesis 4, 113–121.

    Article  PubMed  CAS  Google Scholar 

  5. Tolboom, T.C., Huizinga, T.W. In vitro matrigel fibroblast invasion study Meth. Mol. Med. 135, 413–421.

    Google Scholar 

  6. Lochter, A., Srebrow, A., Sympson, C.J., Terracio, N., Werb, Z., and Bissell, M.J. (1997) Misregulation of stromelysin-1 expression in mouse mammary tumor cells accompanies acquisition of stromelysin-1-dependent invasive properties. J. Biol. Chem. 272, 5007–5015.

    Article  PubMed  CAS  Google Scholar 

  7. Knutson, J.R., Iida, J., Fields, G.B., and McCarthy, J.B. (1996) CD44/chondroitin sulfate proteoglycan and alpha 2 beta 1 integrin mediate human melanoma cell migration on type IV collagen and invasion of basement membranes. Mol. Biol.Cell. 7, 383–396.

    PubMed  CAS  Google Scholar 

  8. Setsuko, K. (2000) Chambers In vitro invasion assays. Meth. Mol. Med. 39, 179–185.

    Google Scholar 

  9. Storgard, C., Mikolon, D., and Stupack, D.G. (2004) Angiogenesis assays in the chick CAM. Meth. Mol. Biol. 294, 123–136.

    Google Scholar 

  10. Mydlo, J. (2001) Angiogenesis assays. Meth. Mol. Med. 53, 265–275.

    CAS  Google Scholar 

  11. Nguyen, M., Shing, Y., and Folkman, J. (1994) Quantitation of angiogenesis and anti-angiogenesis in the chick embryo chorioallantoic membrane. Microvasc. Res. 47, 31–38.

    Article  PubMed  CAS  Google Scholar 

  12. Cockerill, G. W., Gamble, J. R., and Vadas, M. A. (1995) Angiogenesis: models and modulators. Int. Rev. Cytol. 159, 113–160.

    Article  PubMed  CAS  Google Scholar 

  13. Nicosia, R. F. and Ottinetti, A. (1990) Growth of microvessels in serum-free matrix culture of rat aorta: a quantitative assay of angiogenesis in vitro. Lab.Invest. 63, 115–122.

    Google Scholar 

  14. O’Reilly, M. S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R.A., Moses, M., Lane, W.S., Cao, Y., Sage, E.H., and Folkman, J. (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315–328.

    Article  PubMed  Google Scholar 

  15. Ferrara, N. and Alitalo, K. (1999) Clinical applications of angiogenic growth factors and their inhibitors. Nat. Med. 5, 1359–1364.

    Article  PubMed  CAS  Google Scholar 

  16. Go, R.S. and Owen, W.G. (2000) Very low concentrations of rat plasma and rat serum stimulate angiogenesis in the rat aortic ring assay. Fibrinolysis Proteol. 19 (Suppl 1), 45.

    Google Scholar 

  17. Passaniti, A., Taylor, R. M., Pili, R., Guo, Y., Long, P. V., Haney, J. A., Pauly, R. R., Grant, D. G., and Martin, G. R. (1992) A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab. Invest. 67, 519–528.

    PubMed  CAS  Google Scholar 

  18. Grant, D. S., Kinsella, J. L., Fridman, R., Auerbach, R., Piasecki, B. A., Yamada, Y., Zain, M., and Kleinman, H. K. (1992) Interaction of endothelial cells with a laminin A chain peptide (SIKVAV) in vitro and induction of angiogenic behavior in vivo. J. Cell Physiol. 153, 614–625.

    Article  PubMed  CAS  Google Scholar 

  19. Kibbey, M. C., Corcoran, M. L., Wahl, L. M., and Kleinman, H. K. (1994) Laminin SIKVAV peptide-induced angiogenesis in vivo is potentiated by neutrophils. J. Cell Phys. 160, 185–193.

    Article  CAS  Google Scholar 

  20. Malinda, K. (2008) In vivo matrigel migration and angiogenesis assay, Meth. Mol. Biol. 467, 287–294.

    Article  Google Scholar 

  21. Stechschulte, S.U., Joussen, A.M., von Recum, H.A., Poulaki, V., Moromizato, Y., Yuan, J., D’Amato, R.J., Kuo, C. and Adamis, A.P. (2001) Rapid ocular angiogenic control via naked DNA delivery to cornea. Invest. Ophthalmol. Vis. Sci. 42, 1975–1979.

    PubMed  CAS  Google Scholar 

  22. Joussen, A.M., Poulaki, V., Mitsiades, N., Stechschulte, S.U., Kirchhof, B., Dartt, D.A., Fong, G.H., Rudge, J., Wiegand, S.J., Yancopoulos, G.D. and Adamis, A.P. (2003) VEGF-dependent conjunctivalization of the corneal surface. Invest. Ophthalmol. Vis. Sci. 44, 117–123.

    Article  PubMed  Google Scholar 

  23. Smith, L.E., Wesolowski, E., McLellan, A., Kostyk, S.K., D’Amato, R., Sullivan, R. and D’Amore, P.A. (1994) Oxygen-induced retinopathy in the mouse. Invest. Ophthalmol. Vis. Sci. 35, 101–111.

    PubMed  CAS  Google Scholar 

  24. Kociok, N., Krohne, T.U., Poulaki, V. and Joussen, A.M. (2007) Geldanamycin treatment reduces neovascularization in a mouse model of retinopathy of prematurity. Graefes Arch. Clin. Exp. Ophthalmol. 245, 258–266.

    Article  PubMed  CAS  Google Scholar 

  25. Maier, A.K., Kociok, N., Zahn, G., Vossmeyer, D., Stragies, R., Muether, P.S. and Joussen, A.M. (2007) Modulation of hypoxia-induced neovascularization by JSM6427, an integrin alpha5beta1 inhibiting molecule. Curr. Eye Res. 32, 801–812.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Poulaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Poulaki, V. (2011). Angiogenesis Assays. In: Cree, I. (eds) Cancer Cell Culture. Methods in Molecular Biology, vol 731. Humana Press. https://doi.org/10.1007/978-1-61779-080-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-080-5_28

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-079-9

  • Online ISBN: 978-1-61779-080-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics