Skip to main content

Introducing Cloned Genes into Cultured Neurons Providing Novel In vitro Models for Neuropathology and Neurotoxicity Studies

  • Protocol
  • First Online:
Cell Culture Techniques

Part of the book series: Neuromethods ((NM,volume 56))

Abstract

Recent advances in techniques to introduce nucleic acids into cultured cells have significantly contributed to understanding the roles of genes (and their encoded proteins) in maintaining cellular homeostasis. The objective of this chapter is to provide methodological strategies for gene introduction specifically into cultured neuronal cells. This approach has been used to study the role of specific proteins in neurodegenerative and neuroprotective events, as well as in neurotransmission, antioxidant defenses, energetic metabolism, and several other physiological phenomena related to the neuronal homeostasis. The chapter starts with a description of the most important vectors currently available for neuronal transfections. A particular emphasis is directed at plasmid vectors, and a simple but useful protocol to isolate plasmids from bacteria is presented. This is followed by a discussion on the fundamentals of gene manipulation emphasizing the basics on how to isolate a DNA fragment, as well as modify and insert it into a vector. Since bacteria can be transfected with the cloning vector, it is possible to achieve high levels of the vector during bacterial growth. The purified vector can be inserted into a eukaryotic cell, such as a neuron, which uses its transcriptional machinery to overexpress the protein of interest. The chapter also presents discussions and protocols on delivering nucleic acids into cultured neuronal cells (primary and cell lines), with a particular emphasis on lipid-based (lipofection) and electroporation-based transfection. At the end of the chapter, we discuss recent applications of gene transfection to study neuropathology and neurotoxicity. The use of strategies to overexpress specific proteins into cultured neuronal cells has been useful to study neurodegenerative diseases (i.e., Parkinson disease vs. alpha-synuclein or parkin) and neurotoxicity events (i.e., methylmercury-induced neurotoxicity vs. glutathione peroxidase). In this regard, studies point to the fact that genetically-modified cultured neuronal cells may help neurotoxicologists in the difficult task of screening environmental toxicants with potential hazard for predisposition to neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farina M, Campos F, Vendrell I, Berenguer J, Barzi M, Pons S, Suñol C (2009) Probucol increases glutathione peroxidase-1 activity and displays long-lasting protection against methylmercury toxicity in cerebellar granule cells. Toxicol Sci 112:416–26

    Article  PubMed  CAS  Google Scholar 

  2. Anderson S, Davis DL, Dahlbäck H, Jörnvall H, Russell DW (1989) Cloning, structure and expression of the mitochondrial cytochrome p-450 sterol 26-hydrolase, a bile acid biosynthethic enzyme. J Biol Chem 264:8222–29

    Google Scholar 

  3. Boshart M, Weber F, Jahn G, Dorsch-Häsler K, Fleckenstein B, Schafner W (1985) A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 41:521–30

    Article  PubMed  CAS  Google Scholar 

  4. Nelson JA, Reynolds-Kohler C, Smith BA (1987) Negative and positive regulation by a short segment in the 5′ flanking region of the human cytomegalovirus major immediate-early gene. Mol Cell Biol 7:4125–29

    PubMed  CAS  Google Scholar 

  5. Cereghini S, Herbomel P, Jouanneau J, Saragosti S, Katinka M, Bourachot B, de Crombrugghe B, Yaniv M (1983) Structure and function of the promoter-enhancer region of Polyoma and SV40. Cold Spring Harb Symp Quant Biol 47:935–44

    PubMed  Google Scholar 

  6. Cheng L, Ziegelhoffer PR, Yang NS (1993) In vivo promoter activity and transgene expression in mammalian somatic tissues evaluated by particle bombardment. Proc Nat Acad Sci USA 90:4455–59

    Article  PubMed  CAS  Google Scholar 

  7. Herskowitz I (1987) Functional inactivation of genes by dominant negative mutations. Nature 329:219–22

    Article  PubMed  CAS  Google Scholar 

  8. Sheppard D (1994) Dominant negative mutants: tools for the study of protein function in vitro and in vivo. Am J Respir Cell Mol Biol 11:1–6

    PubMed  CAS  Google Scholar 

  9. Wood KV, de Wet JR, Dewji N, DeLuca M (1984) Synthesis of active firefly luciferase by in vitro translation of RNA obtained from adult lanterns. Biochem Biophys Res Commun 124:592–6

    Article  PubMed  CAS  Google Scholar 

  10. de Wet JR, Wood KV, Helinski DR, DeLuca M (1985) Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proc Natl Acad Sci USA 82:7870–3

    Article  PubMed  Google Scholar 

  11. Vieites JM, Navarro-García F, Pérez-Diaz R, Pla J, Nombela C (1994) Expression and in vivo determination of firefly luciferase as gene reporter in Saccharomyces cerevisiae. Yeast 10:1321–27

    Article  PubMed  CAS  Google Scholar 

  12. Gailey PC, Miller EJ, Griffin GD (1997) Low-cost system for real-time monitoring of luciferase gene expression. Biotechniques 22:528–34

    PubMed  CAS  Google Scholar 

  13. Cohen SN, Chang AC, Boyer HW, Helling RB (1973) Construction of biologically functional bacterial plasmids in vitro. Proc Nat Acad Sci USA 70:3240–4

    Article  PubMed  CAS  Google Scholar 

  14. Dussoix D, Arber W (1962) Host specificity of DNA produced by Escherichia coli. I. Host controlled modification of bacteriophage lambda. J Mol Biol 5:18–36

    Article  PubMed  Google Scholar 

  15. Dussoix D, Arber W (1962) Host specificity of DNA produced by Escherichia coli. II. Control over acceptance of DNA from infecting phage lambda. J Mol Biol 5:37–49

    Article  PubMed  CAS  Google Scholar 

  16. Boyer H (1964) Genetic control of restriction and modification in Escherichia coli. J Bacteriol 88:1652–60

    PubMed  CAS  Google Scholar 

  17. Meselson M, Yuan R (1968) DNA restriction enzyme from E. coli. Nature 217:1110–14

    Article  PubMed  CAS  Google Scholar 

  18. Arber W, Linn S (1969) DNA modification and restriction. Ann Rev Biochem 38:467–500

    Article  PubMed  CAS  Google Scholar 

  19. Smith HO, Wilcox KW (1970) A restriction enzyme from Haemophilus influenzae. I. Purification and general properties. J Mol Biol 51:379–91

    Article  PubMed  CAS  Google Scholar 

  20. Kelly TJ, Smith HO (1970) A restriction enzyme from Haemophilus influenzae. II. Base sequence of the recognition site. J Mol Biol 51:393–409

    Article  PubMed  CAS  Google Scholar 

  21. Hattman S, Brooks JE, Masurekar M (1978) Sequence specificity of the P1 modification methylase (M.Eco P1) and the DNA methylase (M.Eco dam) controlled by the Escherichia coli dam gene. J Mol Biol 126:367–80

    Article  PubMed  CAS  Google Scholar 

  22. Wilson GG (1991) Organization of restriction-modification systems. Nucleic Acids Res 19:2539–66

    Article  PubMed  CAS  Google Scholar 

  23. Tomkinson AE, Vijayakumar S, Pascal JM, Ellenberger T (2006) DNA ligases: structure, reaction mechanism, and function. Chem Rev 106:687–99

    Article  PubMed  CAS  Google Scholar 

  24. Olivera BM, Hall ZW, Lehman IR (1968) Enzymatic joining of polynucleotides. V. A DNA adenylate intermediate in the polinucleotide joining reaction. Proc Nat Acad Sci USA 61:237–44

    Article  PubMed  CAS  Google Scholar 

  25. Gumport RI, Lehman IR (1971) Structure of the DNA ligase-adenylate intermediate: lysine (epsilon-amino)-linked adenosine monophosphoramidate. Proc Nat Acad Sci USA 68:2559–63

    Article  PubMed  CAS  Google Scholar 

  26. Griffith F (1928) The significance of pneumococcal types. J Hyg 27:113–159

    Article  CAS  Google Scholar 

  27. Mandel M, Higa A (1970) Calcium-dependent bacteriophage DNA infection. J Mol Biol 53:159–62

    Article  PubMed  CAS  Google Scholar 

  28. Cohen SN, Chang ACY, Hsu L (1972) Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-Factor DNA. Proc Nat Acad Sci USA 69:2110–14

    Article  PubMed  CAS  Google Scholar 

  29. Klebe RJ, Harriss JV, Sharp ZD, Douglas MG (1983) A general method for polyethylene-glycol-induced genetic transformation of ­bacteria and yeast. Gene 25:333–41

    Article  PubMed  CAS  Google Scholar 

  30. Chung CT, Miller RH (1988) A rapid and convenient method for the preparation and storage of competent bacterial cells. DNA 7:609–15

    Article  PubMed  Google Scholar 

  31. Mullis KB, Faloona F, Scharf S, Saiki R, Horn G, Erlich H (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51:263–73

    PubMed  CAS  Google Scholar 

  32. Mullis KB, Faloona FA (1987) Specific ­synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155:335–50

    Article  PubMed  CAS  Google Scholar 

  33. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 29:487–91

    Article  Google Scholar 

  34. Brock TD, Freeze H (1969) Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol 98:289–97

    Article  PubMed  CAS  Google Scholar 

  35. Suggs SV, Wallace RB, Hirose T, Kawashima EH, Itakura K (1981) Use of synthetic oligonucleotides as hybridization probes: isolation of cloned cDNA sequences for human beta 2-microglobulin. Proc Natl Acad Sci USA 78:6613–7

    Article  PubMed  CAS  Google Scholar 

  36. Thein SL, Wallace RB (1986) The use of synthetic oligonucleotides as specific hybridization probes in the diagnosis of genetic desorders. In: Davies KE (ed) Human genetic diseases: a practical approach. IRL, Oxford, pp 33–50

    Google Scholar 

  37. Bickley J, Hopkins D (1999) Inhibitors and enhancers of PCR. Quality and Validation, eds Saunders, G.C., and Parkes, H.C., Royal Society of Chemistry, London, Chapter in Analytycal Molecular Biology, pp 81–102

    Google Scholar 

  38. Kunkel TA, Roberts JD, Zakour RA (1987) Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol 154:367–82

    Article  PubMed  CAS  Google Scholar 

  39. Higuchi R, Krummel B, Saiki RK (1988) A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res 16:7351–67

    Article  PubMed  CAS  Google Scholar 

  40. Washbourne P, McAllister AK (2002) Techniques for gene transfer into neurons. Curr Opin Neurobiol 12:566–73

    Article  PubMed  CAS  Google Scholar 

  41. Dahm R, Zeitelhofer M, Gotze B, Kiebler MA, Macchi P (2008) Visualizing mRNA localization and local protein translation in neurons. Methods Cell Biol 85:293–327

    Article  PubMed  CAS  Google Scholar 

  42. Goetze B, Grunewald B, Baldassa S, Kiebler M (2004) Chemically controlled formation of a DNA/calcium phosphate coprecipitate: application for transfection of mature hippocampal neurons. J Neurobiol 60:517–25

    Article  PubMed  CAS  Google Scholar 

  43. Pagano JS, Vaheri A (1965) Enhancement of infectivity of poliovirus RNA with diethylaminoethyl-dextran (DEAE-D). Arch Gesamte Virusforsch 17:456–64

    Article  PubMed  CAS  Google Scholar 

  44. McCutchan JH, Pagano JS (1968) Enchancement of the infectivity of simian virus 40 deoxyribonucleic acid with diethylaminoethyl-dextran. J Natl Cancer Inst 41:351–7

    PubMed  CAS  Google Scholar 

  45. Gluzman Y (1981) SV40-transformed simian cells support the replication of early SV40 mutants. Cell 23:175–82

    Article  PubMed  CAS  Google Scholar 

  46. Kawai S, Nishizawa M (1984) New procedure for DNA transfection with polycation and dimethyl sulfoxide. Mol Cell Biol 4:1172–4

    PubMed  CAS  Google Scholar 

  47. Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 92:7297–301

    Article  PubMed  CAS  Google Scholar 

  48. Haensler J, Szoka FC Jr (1993) Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug Chem 4:372–9

    Article  PubMed  CAS  Google Scholar 

  49. Kukowska-Latallo JF, Bielinska AU, Johnson J, Spindler R, Tomalia DA, Baker JR Jr (1996) Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers. Proc Natl Acad Sci USA 93:4897–902

    Article  PubMed  CAS  Google Scholar 

  50. Graham FL, van der Eb AJ (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–67

    Article  PubMed  CAS  Google Scholar 

  51. Fraley R, Papahadjopoulos D (1982) Liposomes: the development of a new carrier system for introducing nucleic acid into plant and animal cells. Curr Top Microbiol Immunol 96:171–91

    PubMed  CAS  Google Scholar 

  52. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 84:7413–7

    Article  PubMed  CAS  Google Scholar 

  53. Labat-Moleur F, Steffan AM, Brisson C, Perron H, Feugeas O, Furstenberger P, Oberling F, Brambilla E, Behr JP (1996) An electron microscopy study into the mechanism of gene transfer with lipopolyamines. Gene Ther 3:1010–7

    PubMed  CAS  Google Scholar 

  54. Gao X, Huang L (1995) Cationic liposome-mediated gene transfer. Gene Ther 2:710–22

    PubMed  CAS  Google Scholar 

  55. Farhood H, Bottega R, Epand RM, Huang L (1992) Effect of cationic cholesterol derivatives on gene transfer and protein kinase C activity. Biochim Biophys Acta 1111:239–46

    Article  PubMed  CAS  Google Scholar 

  56. Invitrogen Corporation. BioTechniques Protocol Guide (2009) Transfection of PC12 Cells with lipofectamine™ LTX does not affect their ability to differentiate upon NGF stimulation. 33, doi: 10.2144/000113028

    Google Scholar 

  57. Felgner PL, Holm M, Chan H (1989) Cationic liposome mediated transfection. Proc West Pharmacol Soc 32:115–21

    PubMed  CAS  Google Scholar 

  58. Vorburger SA, Hunt KK (2002) Adenoviral gene therapy. Oncologist 7:46–59

    Article  PubMed  CAS  Google Scholar 

  59. Lundberg C, Björklund T, Carlsson T, Jakobsson J, Hantraye P, Déglon N, Kirik D (2008) Applications of lentiviral vectors for biology and gene therapy of neurological disorders. Curr Gene Ther 8:461–73

    Article  PubMed  CAS  Google Scholar 

  60. Capecchi MR (1980) High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 22:479–88

    Article  PubMed  CAS  Google Scholar 

  61. Ye GN, Daniell H, Sanford JC (1990) Optimization of delivery of foreign DNA into higher-plant chloroplasts. Plant Mol Biol 15:809–19

    Article  PubMed  CAS  Google Scholar 

  62. Klein TM, Fromm M, Weissinger A, Tomes D, Schaaf S, Sletten M, Sanford JC (1988) Transfer of foreign genes into intact maize cells with high-velocity microprojectiles. Proc Natl Acad Sci USA 85:4305–4309

    Article  PubMed  CAS  Google Scholar 

  63. Burkholder JK, Decker J, Yang NS (1993) Rapid transgene expression in lymphocyte and macrophage primary cultures after particle bombardment-mediated gene transfer. J Immunol Methods 165:149–56

    Article  PubMed  CAS  Google Scholar 

  64. Ogura R, Matsuo N, Wako N, Tanaka T, Ono S, Hiratsuka K (2005) Multi-color luciferases as reporters for monitoring transient gene expression in higher plants. BMC Biotechnol 22:151–5

    CAS  Google Scholar 

  65. Wong TK, Neumann E (1982) Electric field mediated gene transfer. Biochem Biophys Res Commun 107:584–7

    Article  PubMed  CAS  Google Scholar 

  66. Shigekawa K, Dower WJ (1988) Electroporation of eukaryotes and prokaryotes: a general approach to the introduction of macromolecules into cells. Biotechniques 6:742–51

    PubMed  CAS  Google Scholar 

  67. Chu G, Hayakawa H, Berg P (1987) Electroporation for the efficient transfection of mammalian cells with DNA. Nucleic Acids Res 15:1311–26

    Article  PubMed  CAS  Google Scholar 

  68. Rabussay D, Uher L, Bates G, Piastuch W (1987) Electroporation of mammalian and plant cells. Focus (Life Technol) 9:1–3

    Google Scholar 

  69. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1:841–5

    PubMed  CAS  Google Scholar 

  70. Potter H, Weir L, Leder P (1984) Enhancer-dependent expression of human kappa immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation. Proc Natl Acad Sci USA 81:7161–5

    Article  PubMed  CAS  Google Scholar 

  71. Alvarez-Rodriguez R, Barzi M, Berenguer J, Pons S (2007) Bone morphogenetic protein 2 opposes Shh-mediated proliferation in cerebellar granule cells through a TIEG-1-based regulation of Nmyc. J Biol Chem 282:37170–80

    Article  PubMed  CAS  Google Scholar 

  72. Ting JT, Kelley BG, Lambert TJ, Cook DG, Sullivan JM (2007) Amyloid precursor protein overexpression depresses excitatory transmission through both presynaptic and postsynaptic mechanisms. Proc Natl Acad Sci USA 104:353–8

    Article  PubMed  CAS  Google Scholar 

  73. Monje ML, Phillips R, Sapolsky R (2001) Calbindin overexpression buffers hippocampal cultures from the energetic impairments caused by glutamate. Brain Res 911:37–42

    Article  PubMed  CAS  Google Scholar 

  74. Rintoul GL, Raymond LA, Baimbridge KG (2001) Calcium buffering and protection from excitotoxic cell death by exogenous calbindin-D28k in HEK 293 cells. Cell Calcium 29:277–87

    Article  PubMed  CAS  Google Scholar 

  75. Haque ME, Asanuma M, Higashi Y, Miyazaki I, Tanaka K, Ogawa N (2003) Overexpression of Cu-Zn superoxide dismutase protects neuroblastoma cells against dopamine cytotoxicity accompanied by increase in their glutathione level. Neurosci Res 47:31–7

    Article  PubMed  CAS  Google Scholar 

  76. Gimenez-Cassina A, Lim F, Cerrato T, Palomo GM, Diaz-Nido J (2009) Mitochondrial hexokinase II promotes neuronal survival and acts downstream of glycogen synthase kinase-3. J Biol Chem 284:3001–11

    Article  PubMed  CAS  Google Scholar 

  77. Perucho M, Hanahan D, Wigler M (1980) Genetic and physical linkage of exogenous sequences in transformed cells. Cell 22:309–17

    Article  PubMed  CAS  Google Scholar 

  78. Maisonhaute C, Echalier G (1986) Stable transformation of Drosophila Kc cells to antibiotic resistance with the bacterial neomycin resistance gene. FEBS Lett 197:45–9

    Article  PubMed  CAS  Google Scholar 

  79. Blochlinger K, Diggelmann H (1984) Hygromycin B phosphotransferase as a selectable marker for DNA transfer experiments with higher eukaryotic cells. Mol Cell Biol 4:2929–31

    PubMed  CAS  Google Scholar 

  80. Vara JA, Portela A, Ortin J, Jimenez A (1986) Expression in mammalian cells of a gene from Streptomyces alboniger conferring puromycin resistance. Nucleic Acids Res 14:4617–24

    Article  PubMed  CAS  Google Scholar 

  81. Gollapudi L, Oblinger MM (1999) Stable transfection of PC12 cells with estrogen receptor (ERalpha): protective effects of estrogen on cell survival after serum deprivation. J Neurosci Res 56:99–108

    Article  PubMed  CAS  Google Scholar 

  82. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith, JA, Struhl K (1999) Short protocols in molecular biology, 4th edn (Paperback). John Wiley & Sons, Inc. New York

    Google Scholar 

  83. Domingues A, Almeida S, da Cruz e Silva EF, Oliveira CR, Rego AC (2007) Toxicity of beta-amyloid in HEK293 cells expressing NR1/NR2A or NR1/NR2B N-methyl-d-aspartate receptor subunits. Neurochem Int 50:872–880

    Google Scholar 

  84. Chong KW, Lee AY, Koay ES, Seet SJ, Cheung NS (2006) pH dependent high transfection efficiency of mouse neuroblastomas using TransFectin. J Neurosci Methods 158:56–63

    Article  PubMed  CAS  Google Scholar 

  85. Huang RQ, Qu YH, Ke WL, Zhu JH, Pei YY, Jiang C (2007) Efficient gene delivery targeted to the brain using a transferrin-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. FASEB J 21:1117–25

    Article  PubMed  CAS  Google Scholar 

  86. Gabizon R, Taraboulos A (1997) Of mice and (mad) cows-transgenic mice help to understand prions. Trends Genet 13:264–9

    Article  PubMed  CAS  Google Scholar 

  87. Kirik D, Björklund A (2003) Modeling CNS neurodegeneration by overexpression of ­disease-causing proteins using viral vectors. Trends Neurosci 26:386–92

    Article  PubMed  CAS  Google Scholar 

  88. Kobayashi Y, Sobue G (2001) Protective effect of chaperones on polyglutamine diseases. Brain Res Bull 56:165–8

    Article  PubMed  CAS  Google Scholar 

  89. Moore DJ, West AB, Dawson VL, Dawson TM (2005) Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci 28:57–87

    Article  PubMed  CAS  Google Scholar 

  90. Rockenstein E, Crews L, Masliah E (2007) Transgenic animal models of neurodegenerative diseases and their application to treatment development. Adv Drug Deliv Rev 59:1093–102

    Article  PubMed  CAS  Google Scholar 

  91. Kitazawa M, Anantharam V, Kanthasamy AG (2003) Dieldrin induces apoptosis by promoting caspase-3-dependent proteolytic cleavage of protein kinase Cδ in dopaminergic cells: Relevance to oxidative stress and dopaminergic degeneration. Neuroscience 119:945–64

    Article  PubMed  CAS  Google Scholar 

  92. Thiruchelvam M, Prokopenko O, Cory-Slechta DA, Richfield EK, Buckley B, Mirochnitchenko O (2005) Overexpression of superoxide dismutase or glutathione peroxidase protects against the paraquat plus maneb-induced Parkinson disease phenotype. J Biol Chem 280:22530–9

    Article  PubMed  CAS  Google Scholar 

  93. Zoghbi HY, Botas J (2002) Mouse and fly models of neurodegeneration. Trends Genet 18:463–71

    Article  PubMed  CAS  Google Scholar 

  94. Jellinger KA (2009) Recent advances in our understanding of neurodegeneration. J Neural Transm 116:1111–62

    Article  PubMed  CAS  Google Scholar 

  95. Lee SJ (2003) Alpha-synuclein aggregation: a link between mitochondrial defects and Parkinson’s disease? Antioxid Redox Signal 5:337–48

    Article  PubMed  CAS  Google Scholar 

  96. Di Napoli M (2009) New molecular avenues in Parkinson’s disease therapy. New molecular avenues in Parkinson’s disease therapy. Curr Top Med Chem 9:913–48

    PubMed  Google Scholar 

  97. Lee HJ, Khoshaghideh F, Lee S, Lee SJ (2006) Impairment of microtubule-dependent trafficking by overexpression of alpha-synuclein. Eur J Neurosci 24:3153–62

    Article  PubMed  Google Scholar 

  98. Hsu LJ, Sagara Y, Arroyo A, Rockenstein E, Sisk A, Mallory M, Wong J, Takenouchi T, Hashimoto M, Masliah E (2000) alpha-synuclein promotes mitochondrial deficit and oxidative stress. Am J Pathol 157:401–10

    Article  PubMed  CAS  Google Scholar 

  99. Hyun DH, Lee M, Halliwell B, Jenner P (2005) Effect of overexpression of wild-type or mutant parkin on the cellular response induced by toxic insults. J Neurosci Res 82:232–44

    Article  PubMed  CAS  Google Scholar 

  100. Lo Bianco C, Schneider BL, Bauer M, Sajadi A, Brice A, Iwatsubo T, Aebischer P (2004) Lentiviral vector delivery of parkin prevents dopaminergic degeneration in an alpha-synuclein rat model of Parkinson’s disease. Proc Nat Acad Sci USA 101:17510–5

    Article  PubMed  CAS  Google Scholar 

  101. Reynolds A, Laurie C, Mosley RL, Gendelman HE (2007) Oxidative stress and the pathogenesis of neurodegenerative disorders. Int Rev Neurobiol 82:297–325

    Article  PubMed  CAS  Google Scholar 

  102. Moreira PI, Zhu X, Wang X, Lee H-g, Nunomura A, Petersen RB, Perry G (2010) Mitochondria: a therapeutic target in neurodegeneration. Biochim Biophys Acta 1802:212–20

    PubMed  CAS  Google Scholar 

  103. Aschner M, Syversen T, Souza DO, Rocha JBT, Farina M (2007) Involvement of glutamate and reactive oxygen species in methylmercury neurotoxicity. Braz J Med Biol Res 40:285–91

    Article  PubMed  CAS  Google Scholar 

  104. Offen D, Beart PM, Cheung NS, Pascoe CJ, Hochman A, Gorodin S, Melamed E, Bernard R, Bernard O (1998) Transgenic mice expressing human Bcl-2 in their neurons are resistant to 6-hydroxydopamine and 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine neurotoxicity. Proc Nat Acad Sci USA 95:6789–94

    Article  Google Scholar 

  105. Mandavilli BS, Boldogh I, Van Houten B (2005) 3-Nitropropionic acid-induced hydrogen peroxide, mitochondrial DNA damage, and cell death are attenuated by Bcl-2 overexpression in PC12 cells. Mol Brain Res 133:215–23

    Article  PubMed  CAS  Google Scholar 

  106. Seyfried J, Evert BO, Schwarz CS, Schaupp M, Schulz JB, Klockgether T, Wüllner U (2003) Gene dosage-dependent effects of bcl-2 expression on cellular survival and redox status. Free Radic Biol Med 34:1517–30

    Article  PubMed  CAS  Google Scholar 

  107. Schmidt CW (2007) Environmental connections: a deeper look into mental illness. Environ Health Perspect A404:A406–10

    Google Scholar 

  108. Kotake Y, Ohta S (2003) MPP plus analogs acting on mitochondria and inducing neuro-degeneration Cur. Med Chem 10:2507–2516

    CAS  Google Scholar 

  109. do Nascimento JLM, Oliveira KRM, Crespo-Lopez ME, Macchi BM, Maues LAL, Pinheiro MDN, Silveira LCL, Herculano AM (2008) Methylmercury neurotoxicity and antioxidant defenses. Ind J Med Res 128:373–82

    CAS  Google Scholar 

  110. Quintanilla RA, Johnson GVW (2009) Role of mitochondrial dysfunction in the pathogenesis of Huntington’s disease. Brain Res Bull 80:242–47

    Article  PubMed  CAS  Google Scholar 

  111. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    Article  PubMed  CAS  Google Scholar 

  112. Toyama T, Sumi D, Shinkai Y, Yasutake A, Taguchi K, Tong KI, Yamamoto and M, Kumagai Y (2007) Cytoprotective role of Nrf2/Keap1 system in methylmercury toxicity. Biochem Biophys Res Commun 363:645–50

    Article  PubMed  CAS  Google Scholar 

  113. Wang L, Jiang HY, Yin ZB, Aschner M, Cai JY (2009) Methylmercury toxicity and Nrf2-dependent detoxification in astrocytes. Toxicol Sci 107:135–43

    Article  PubMed  CAS  Google Scholar 

  114. Yao CP, Allen JW, Conklin DR, Aschner M (1999) Brain Res 818:414–20

    Article  PubMed  CAS  Google Scholar 

  115. Hwang YP, Kim HG, Han EH, Jeong HG (2008) Metallothionein-III protects against 6-hydroxydopamine-induced oxidative stress by increasing expression of heme oxygenase-1 in a PI3K and ERK/Nrf2-dependent manner. Toxicol Appl Pharmacol 231:318–27

    Article  PubMed  CAS  Google Scholar 

  116. Forsby A, Bal-Price AK, Coecke S, Fabre N, Gustafsson H, Honegger P, Kinsner-Ovaskainen A, Pallas M, Rimbau V, Rodriguez-Farre E, Sunol C, Vericat JA, Zurich MG (2009) Neuronal in vitro models for the estimation of acute systemic toxicity. Toxicol In Vitro 23:1564–69

    Article  PubMed  CAS  Google Scholar 

Recommended Reading

  • Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual (Hardcover), 3rd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Primrose SB, Twyman RM (2007) Principles of gene manipulation and genomics, 7th edn. Blackwell Publishing, Oxford, UK

    Google Scholar 

  • Glick BR, Pasternak JJ (2003) Molecular biotechnology. Principles and applications of recombinant DNA, 3rd edn. ASM Press, Washington DC

    Google Scholar 

  • Brown TA (2008) Gene cloning and DNA analysis, 5th edn. Blackwell Publishing, Oxford, UK

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the agencies that support their research activities (in alphabetical order): Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq and INCT for Excitotoxicity and Neuroprotection-MCT/CNPq, Brazil (Marcelo Farina and João B. T. Rocha); Fundação de Amparo à Pesquisa do Estado de Santa Catarina, Brazil (Marcelo Farina); NIH ES10563 and ES 07331 (Michael Aschner); Spanish Ministry of Education Grant BFU2008-02424/BFI (Sebastián Pons). Jordi Berenguer is a FPI fellow in Sebastián Pons laboratory (fellowship also supported by the Spanish Ministry of Education Grant BFU2008-02424/BFI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Farina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Farina, M., Berenguer, J., Pons, S., da Rocha, J.B.T., Aschner, M. (2011). Introducing Cloned Genes into Cultured Neurons Providing Novel In vitro Models for Neuropathology and Neurotoxicity Studies. In: Aschner, M., Suñol, C., Bal-Price, A. (eds) Cell Culture Techniques. Neuromethods, vol 56. Humana Press. https://doi.org/10.1007/978-1-61779-077-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-077-5_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-076-8

  • Online ISBN: 978-1-61779-077-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics