Skip to main content

Neurotransmitter Transporters and Anticonvulsant Drug Development

  • Protocol
  • First Online:
Book cover Cell Culture Techniques

Part of the book series: Neuromethods ((NM,volume 56))

Abstract

Excitatory and inhibitory neurotransmission mediated by glutamate and GABA, respectively, plays a major role in generation of seizures. So far, emphasis has been placed on the GABA system in attempts to develop antiepileptic drugs. Tiagabine, a selective inhibitor of GABA transporter 1 (GAT1), is marketed for treatment of certain seizure types and serves as a proof of principle that inhibitors of GABA transport may be interesting in this context. The chapter describes the methodology available to investigate in detail the pharmacology of GABA transporters and design of studies leading to identification of drug candidates. Emphasis is placed on a possible role of extrasynaptic GABA transporters in seizure control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McGeer PL, Eccles JC, McGeer EG (1987) Molecular neurobiology of the mammalian, 2nd edn. Plenum, New York, pp 109–150

    Google Scholar 

  2. Schousboe A (1990) Neurochemical alterations associated with epilepsy or seizure ­activity. In: Dam M, Gram L (eds) Comprehensive epileptology. Raven, New York, pp 1–16

    Google Scholar 

  3. Gether U, Andersen PH, Larsson OM, Schousboe A (2006) Neurotransmitter transporters: molecular function of important drug targets. Trends Pharmacol Sci 27:375–383

    Article  PubMed  CAS  Google Scholar 

  4. Gegelashvili G, Schousboe A (1997) High-affinity glutamate transporters: regulation of expression and activity. Mol Pharmacol 52:6–15

    PubMed  CAS  Google Scholar 

  5. Fonnum F (1984) Glutamate: a neurotransmitter in mammalian brain. J Neurochem 42:1–11

    Article  PubMed  CAS  Google Scholar 

  6. Gegelashvili G, Schousboe A (1998) Cellular distribution and kinetic properties of high-affinity glutamate transporters. Brain Res Bull 45:233–238

    Article  PubMed  CAS  Google Scholar 

  7. Danbolt NC (2001) Glutamate uptake. Progr Neurobiol 65:1–105

    Article  CAS  Google Scholar 

  8. Schousboe A (2003) Role of astrocytes in the maintenance and modulation of glutamatergic and GABAergic neurotransmission. Neurochem Res 28:347–352

    Article  PubMed  CAS  Google Scholar 

  9. Benveniste H, Drejer J, Schousboe A, Diemer NH (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43:1369–1374

    Article  PubMed  CAS  Google Scholar 

  10. Choi DW, Rothman SM (1990) The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci 13:171–182

    Article  PubMed  CAS  Google Scholar 

  11. Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW (1995) Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 38:73–84

    Article  PubMed  CAS  Google Scholar 

  12. Schousboe A, Waagepetersen HS (2005) Role of astrocytes in glutamate homeostasis: implications for excitotoxicity. Neurotox Res 8:221–225

    Article  PubMed  CAS  Google Scholar 

  13. Borden LA (1996) GABA transporter heterogeneity: pharmacology and cellular localization. Neurochem Int 29:335–356

    Article  PubMed  CAS  Google Scholar 

  14. Conti F, Melone M, De Biasi S, Minelli A, Brecha NC, Ducati A (1998) Neuronal and glial localization of GAT-1, a high-affinity gamma-aminobutyric acid plasma membrane transporter, in human cerebral cortex: with a note on its distribution in monkey cortex. J Comp Neurol 396:51–63

    Article  PubMed  CAS  Google Scholar 

  15. Rasola A, Galietta LJ, Barone V, Romeo G, Bagnasco S (1995) Molecular cloning and functional characterization of a GABA/betaine transporter from human kidney. FEBS Lett 373:229–233

    Article  PubMed  CAS  Google Scholar 

  16. Borden LA, Smith KE, Gustasfson EL, Branchek TA, Weinshank RL (1995) Cloning and expression of a betaine/GABA transporter from human brain. J Neurochem 64:977–984

    Article  PubMed  CAS  Google Scholar 

  17. Zhu XM, Ong WY (2004) A light and electron microscopic study of betaine/GABA transporter distribution in the monkey cerebral neocortex and hippocampus. J Neurocytol 33:233–240

    Article  PubMed  CAS  Google Scholar 

  18. Zhu XM, Ong WY (2004) Changes in GABA transporters in the rat hippocampus after kainate-induced neuronal injury: decrease in GAT-1 and GAT-3 but upregulation of betaine/GABA transporter BGT-1. J Neurosci Res 77:402–409

    Article  PubMed  CAS  Google Scholar 

  19. Liu QR, Lopez-Corcuera B, Mandiyan S, Nelson H, Nelson N (1993) Molecular characterization of four pharmacologically distinct γ-aminobutyric acid transporters in mouse brain. J Biol Chem 268:2106–2112

    PubMed  CAS  Google Scholar 

  20. Conti F, Zuccarello LV, Barbaresi P, Minelli A, Brecha NC, Melone M (1999) Neuronal, glial, and epithelial localization of gamma-aminobutyric acid transporter 2, a high-affinity gamma-aminobutyric acid plasma membrane transporter, in the cerebral cortex and neighboring structures. J Comp Neurol 409:482–494

    Article  PubMed  CAS  Google Scholar 

  21. Durkin MM, Smith KE, Borden LA, Weinshank RL, Branchek TA, Gustafson EL (1995) Localization of messenger RNAs encoding three GABA transporters in rat brain: an in situ hybridization study. Brain Res Molec Brain Res 33:7–21

    Article  CAS  Google Scholar 

  22. Minelli A, DeBiasi S, Brecha NC, Zuccarello LV, Conti F (1996) GAT-3, a high-affinity GABA plasma membrane transporter, is localized to astrocytic processes, and is not confined to the vicinity of GABAergic synapses in the cerebral cortex. J Neurosci 16:6255–6264

    PubMed  CAS  Google Scholar 

  23. Takayama C, Inoue Y (2005) Developmental expression of GABA transporter-1 and d3 during formation of the GABAergic synapses in the mouse cerebellar cortex. Brain Res Dev Brain Res 158:41–49

    Article  PubMed  CAS  Google Scholar 

  24. Schousboe A, White HS (2009) Modulation of excitability via glutamate and GABA transporters. In: Schwartzkroin P (ed) Encyclopedia of basic epilepsy research, vol 1. Elsevier, Oxford, UK, pp 397–401

    Chapter  Google Scholar 

  25. Sheldon AL, Robinson MB (2007) The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int 51:333–355

    Article  PubMed  CAS  Google Scholar 

  26. Jelenkovic AV, Jovanovic MD, Stanimirovic DD, Bokonjic DD, Ocic GG, Boskovic BS (2008) Beneficial effects of ceftriaxone against pentylenetetrazole-evoked convulsions. Exp Biol Med Maywood 233:1389–1394

    Article  PubMed  CAS  Google Scholar 

  27. Madsen K, White HS, Clausen RP, Frølund B, Larsson OM, Krogsgaard-Larsen P, Schousboe A (2007) Functional and pharmacological aspects of GABA-transporters. In: Lajtha A, Reith M (eds) Handbook of neurochemistry and molecular neurobiology, 3rd edn, Neural membranes and transport. Springer, Berlin, pp 285–304

    Chapter  Google Scholar 

  28. Hertz E, Yu ACH, Hertz L, Juurlink BHJ, Schousboe A (1989) Preparation of primary cultures of mouse cortical neurons. In: Shahar A, De Vellis J, Vernadakis A, Haber B (eds) A dissection and tissue culture manual of the nervous system. R. Liss, New York, pp 183–186

    Google Scholar 

  29. Hertz L, Juurlink BHJ, Hertz E, Fosmark H, Schousboe A (1989) Preparation of primary cultures of mouse (rat) astrocytes. In: Shahar A, De Vellis J, Vernadakis A, Haber B (eds) A dissection and tissue culture manual of the nervous system. R. Liss, New York, pp 105–108

    Google Scholar 

  30. Hertz L, Juurlink BHJ, Fosmark H, Schousboe A (1982) Astrocytes in primary cultures. In: Pfeiffer SE (ed) Neuroscience approached through cell culture, vol 1. CRC, Boca Raton, pp 175–186

    Google Scholar 

  31. Hertz L, Juurlink BHJ, Szuchet S (1985) Cell cultures. In: Lajtha A (ed) Handbook of neurochemistry, vol 8. Plenum, New York, pp 603–661

    Google Scholar 

  32. Hertz L, Schousboe A (1987) Primary cultures of GABAergic and glutamatergic neurons as model systems to study neurotransmitter functions. I. Differentiated cells. In: Vernadakis A, Privat A, Lauder JM, Timiras PS, Giacobini E (eds) Model systems of development and aging of the nervous system. M. Nijhoff, Boston, pp 19–31

    Google Scholar 

  33. Booher J, Sensenbrenner M (1972) Growth and cultivation of dissociated neurons and glial cells from embryonic chick, rat and human brain in flask cultures. Neurobiology 2:97–105

    PubMed  CAS  Google Scholar 

  34. White HS, Sarup A, Bolvig T, Kristensen AS, Petersen G, Nelson N, Pickering DS, Larsson OM, Frølund B, Krogsgaard-Larsen P, Schousboe A (2002) Correlation between anticonvulsant activity and inhibitory action on glial GABA uptake of the highly selective mouse GAT1 inhibitor 3-hydroxy-4-amino-4, 5, 6, 7-tetrahydro-1, 2-benzisoxazole (exo-THPO) and its N-alkylated analogs. J Pharmacol Exp Therap 302:636–644

    Article  CAS  Google Scholar 

  35. Elliott KA, van Gelder NM (1958) Occlusion and metabolism of gamma-aminobutyric acid by brain tissue. J Neurochem 3:28–40

    Article  PubMed  CAS  Google Scholar 

  36. Iversen LL, Neal MJ (1968) The uptake of [3H]GABA by slices of rat cerebral cortex. J Neurochem 15:1141–1149

    Article  PubMed  CAS  Google Scholar 

  37. Iversen LL, Bloom FE (1972) Studies of the uptake of 3 H-gaba and (3 H)glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography. Brain Res 41:131–143

    Article  PubMed  CAS  Google Scholar 

  38. Henn FA, Hamberger A (1971) Glial cell function: uptake of transmitter substances. Proc Natl Acad Sci USA 68:2686–2690

    Article  PubMed  CAS  Google Scholar 

  39. Schousboe A, Hertz L, Svenneby G (1977) Uptake and metabolism of GABA in astrocytes cultured from dissociated mouse brain hemispheres. Neurochem Res 2:217–229

    Article  CAS  Google Scholar 

  40. Sarup A, Larsson OM, Bolvig T, Frølund B, Krogsgaard-Larsen P, Schousboe A (2003) Effects of 3-hydroxy-4-amino-4, 5, 6, 7-tetrahydro-1, 2-benzisoxazol (exo-THPO) and its N-substituted analogs on GABA transport in cultured neurons and astrocytes and by the four cloned mouse GABA transporters. Neurochem Int 43:445–451

    Article  PubMed  CAS  Google Scholar 

  41. Sarup A, Larsson OM, Schousboe A (2003) GABA transporters and GABA-transaminase as drug targets. Curr Drug Targ CNS Neurol Dis 2:269–277

    Article  CAS  Google Scholar 

  42. Clausen RP, Madsen K, Larsson OM, Frølund B, Krogsgaard-Larsen P, Schousboe A (2006) Structure-activity relationship and pharmacology of γ-aminobutyric acid (GABA) transport inhibitors. Adv Pharmacol 54:265–284

    Article  PubMed  CAS  Google Scholar 

  43. Høg S, Greenwood JR, Madsen KB, Larsson OM, Frøund B, Schousboe A, Krogsgaard-Larsen P, Clausen RP (2006) Structure-activity relationships of selective GABA uptake inhibitors. Curr Top Med Chem 6:1861–1882

    Article  PubMed  Google Scholar 

  44. Liu QR, Mandiyan S, Nelson H, Nelson N (1992) A family of genes encoding neurotransmitter transporters. Proc Natl Acad Sci USA 89:6639–6643

    Article  PubMed  CAS  Google Scholar 

  45. Lopéz-Corcuera B, Liu QR, Mandiyan S, Nelson H, Nelson N (1992) Expression of a mouse brain cDNA encoding novel γ-aminobutyric acid transporter. J Biol Chem 267:17491–17493

    PubMed  Google Scholar 

  46. Bolvig T, Larsson OM, Pickering DS, Nelson N, Falch E, Krogsgaard-Larsen P, Schousboe A (1999) Action of bicyclic isoxazole GABA analogues on GABA transporters and its relation to anticonvulsant activity. Eur J Pharmacol 375:367–374

    Article  PubMed  CAS  Google Scholar 

  47. Clausen RP, Moltzen EK, Perregaard J, Lenz SM, Sanchez C, Falch E, Frølund B, Sarup A, Larsson OM, Schousboe A, Krogsgaard-Larsen P (2005) Selective inhibitors of GABA uptake: synthesis and molecular pharmacology of 3-hydroxy-4-N-methylamino-4, 5, 6, 7-tetrahydro-1, 2-benzo[d]isoxazole analogues. Bioorg Med Chem 13:895–908

    Article  PubMed  CAS  Google Scholar 

  48. White HS, Watson WP, Hansen S, Slough S, Sarup A, Bolvig T, Petersen G, Larsson OM, Clausen RP, Frølund B, Krogsgaard-Larsen P, Schousboe A (2005) First demonstration of a functional role for CNS betaine/GABA transporter (mGAT2) based on synergistic anticonvulsant action among inhibitors of mGAT1 and mGAT2. J Pharmacol Exp Therap 312:866–874

    Article  CAS  Google Scholar 

  49. Borden LA, Dhar TGM, Smith KE, Branchek TA, Gluchowski C, Weinshank RL (1994) Cloning of the human homologue of the GABA transporter GAT-3 and identification of a novel inhibitor with selectivity for this site. Receptor Channels 2:207–213

    CAS  Google Scholar 

  50. Loewe S (1953) The problem of synergism and antagonism of combined drugs. Arzneimittelforschung 3:285–290

    PubMed  CAS  Google Scholar 

  51. Tallarida RJ (1992) Statistical analysis of drug combinations for synergism. Pain 49:93–97

    Article  PubMed  CAS  Google Scholar 

  52. Tallarida RJ, Stone DJ Jr, Raffa RB (1997) Efficient designs for studying synergistic drug combinations. Life Sci 61:1–25

    Article  Google Scholar 

  53. Finney DJ (1971) Probit analysis. Cambridge University Press, London

    Google Scholar 

  54. Horton RW, Collins JF, Anlezark GM, Meldrum BS (1979) Convulsant and anticonvulsant actions in DBA/2 mice of compounds blocking the reuptake of GABA. Eur J Pharmacol 59:75–83

    Article  PubMed  CAS  Google Scholar 

  55. Wood JD, Schousboe A, Krogsgaard-Larsen P (1980) In vivo changes in the GABA content in nerve endings (synaptosomes) induced by inhibitors of GABA uptake. Neuropharmacology 19:1149–1152

    Article  PubMed  CAS  Google Scholar 

  56. Wood JD, Johnson DD, Krogsgaard-Larsen P, Schousboe A (1983) Anticonvulsant activity of the glial selective GABA uptake inhibitor, THPO. Neuropharmacology 22:139–142

    Article  PubMed  CAS  Google Scholar 

  57. Krogsgaard-Larsen P, Labouta J, Meldrum B, Croucher M, Schousboe A (1981) GABA uptake inhibitors as experimental tools and potential drugs in epilepsy research. In: Morselli PL, Lloyd KG, Löscher W, Meldrum BS, Reynolds EM (eds) Neurotransmitters, seizures and epilepsy. Raven, New York, pp 23–33

    Google Scholar 

  58. Croucher MJ, Meldrum BS, Krogsgaard-Larsen P (1983) Anticonvulsant activity of GABA uptake inhibitors and their prodrugs following central or systemic administration. Eur J Pharmacol 89:217–228

    Article  PubMed  CAS  Google Scholar 

  59. Schousboe A, Larsson OM, Wood JD, Krogsgaard-Larsen P (1983) Transport and metabolism of GABA in neurons and glia: implications for epilepsy. Epilepsia 24:531–538

    Article  PubMed  CAS  Google Scholar 

  60. Yunger LM, Fowler PJ, Zarevics P, Setler PE (1984) Novel inhibitors of gamma-aminobutyric acid (GABA) uptake: anticonvulsant actions in rats and mice. J Pharmacol Exp Ther 288:109–115

    Google Scholar 

  61. Sutton I, Simmonds MA (1974) The selective blockade by diaminobutyric acid of neuronal uptake of [3H]GABA in rat brain in vivo. J Neurochem 23:273–274

    Article  PubMed  CAS  Google Scholar 

  62. Dalby NO (2000) GABA-level increasing and anticonvulsant effects of three different GABA uptake inhibitors. Neuropharmacology 39:2399–2407

    Article  PubMed  CAS  Google Scholar 

  63. Mody I (2001) Distinguishing between GABA(A) receptors responsible for tonic and phasic conductances. Neurochem Res 26:907–913

    Article  PubMed  CAS  Google Scholar 

  64. Schousboe A, Larsson OM, Sarup A, White HS (2004) Role of the betaine/GABA transporter (BGT-1/GAT2) for the control of epilepsy. Eur J Pharmacol 500:281–287

    Article  PubMed  CAS  Google Scholar 

  65. Madsen KB, Clausen RP, Larsson OM, Krogsgaard-Larsen P, Schousboe A, White HS (2009) Synaptic and extrasynaptic GABA transporters as targets for anti-epileptic drugs. J Neurochem 109(suppl 1):139–144

    Article  PubMed  CAS  Google Scholar 

  66. Schousboe A (1979) Effects of GABA analogues on the high-affinity uptake of GABA. In: Mandel P, De Feudis FV (eds) Astrocytes in primary cultures in GABA – Biochemistry and CNS Function. Plenum, New York, pp 219–237

    Google Scholar 

  67. Larsson OM, Thorbek P, Krogsgaard-Larsen P, Schousboe A (1981) Effect of homo-β-proline and other heterocyclic GABA analogues on GABA uptake in neurons and astroglial cells and on GABA receptor binding. J Neurochem 37:1509–1516

    Article  PubMed  CAS  Google Scholar 

  68. Larsson OM, Johnston GAR, Schousboe A (1983) Differences in uptake kinetics of cis-3-aminocyclohexane carboxylic acid into neurons and astrocytes in primary cultures. Brain Res 260:279–285

    Article  PubMed  CAS  Google Scholar 

  69. Larsson OM, Griffiths R, Allen IC, Schousboe A (1986) Mutual inhibition kinetic analysis of (γ-aminobutyric acid, taurine, taurine and β-alanine high affinity transport into neurons and astrocytes: evidence for similarity between the taurine and β-alanine carriers in both cell types. J Neurochem 47:426–432

    Article  PubMed  CAS  Google Scholar 

  70. Larsson OM, Falch E, Krogsgaard-Larsen P, Schousboe A (1988) Kinetic characterization of inhibition of gamma-aminobutyric acid uptake into cultured neurons and astrocytes by 4, 4-diphenyl-3-butenyl derivatives of nipecotic acid and guvacine. J Neurochem 50:818–823

    Article  PubMed  CAS  Google Scholar 

  71. Falch E, Perregaard J, Frølund B, Søkilde B, Buur A, Hansen LM, Frydenvang K, Brehm L, Bolvig T, Larsson OM, Sanchez C, White HS, Schousboe A, Krogsgaard-Larsen P (1999) Selective inhibitors of glial GABA uptake: synthesis, absolute stereochemistry, and pharmacology of the enantiomers of 3-hydroxy-4-amino-4, 5, 6, 7-tetrahydro-1, 2-benzisoxazole (exo-THPO) and analogues. J Med Chem 42:5402–5414

    Article  PubMed  CAS  Google Scholar 

  72. Suzdak PD, Frederiksen K, Andersen KE, Sørensen PO, Knutsen LJ, Nielsen EB (1992) NNC-711, a novel potent and selective gamma-aminobutyric acid uptake inhibitor: pharmacological characterization. Eur J Pharmacol 224:189–198

    Article  PubMed  CAS  Google Scholar 

  73. Thomsen C, Sørensen PO, Egebjerg J (1997) 1-(3-(9H-carbazol-9-yl)-1-propyl)-4-(2-methoxyphenyl)-4-piperidinol, a novel subtype selective inhibitor of the mouse type II GABA-transporter. Br J Pharmacol 120:983–985

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The expert secretarial assistance of Ms Hanne Danø is cordially acknowledged. The experimental work forming the basis of this review has been supported by grants from the Lundbeck Foundation (J.nr. 21/05 & R19-A2199).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Schousboe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Schousboe, A., Madsen, K.K., White, H.S. (2011). Neurotransmitter Transporters and Anticonvulsant Drug Development. In: Aschner, M., Suñol, C., Bal-Price, A. (eds) Cell Culture Techniques. Neuromethods, vol 56. Humana Press. https://doi.org/10.1007/978-1-61779-077-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-077-5_22

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-076-8

  • Online ISBN: 978-1-61779-077-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics