Skip to main content

Culture Models for the Study of Amino Acid Transport and Metabolism

  • Protocol
  • First Online:
Cell Culture Techniques

Part of the book series: Neuromethods ((NM,volume 56))

  • 2828 Accesses

Abstract

Glutamine (Gln) plays an important role in satisfying brain metabolic demands and as a precursor for the synthesis of glutamate and γ-aminobutyric acid (GABA). In vitro cultured cell studies have shown that carrier-mediated Gln transport between astrocytes and neurons represents a key factor in the glutamate–GABA–glutamine cycle. Gln transport in astrocytes involves the following systems: sodium-dependent: system N; system ASC; system A and sodium-independent: system L, whereas in neurons only systems A and L are active. Gln-specific carriers primarily mediate not only inward transport, but can also largely contribute to outwardly transport. Therefore, both uptake and release studies are important for the investigation of Gln transport and metabolism. In this unit, methods are presented for radiolabel Gln uptake and efflux experiments in primary astrocyte cultures. These methods can be useful for the investigation of Gln transport by different systems in any tested conditions. We also review here the basic properties of the glutamate–GABA–glutamine cycle, including aspects of transport and metabolism. Furthermore, a section is devoted to the characteristics of the transport systems N, ASC, A and L and to the functional and molecular identifications of the Gln-specific carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Christensen HN (1990) Role of amino acid transport and countertransport in nutrition and metabolism. Physiol Rev 70:43–77

    PubMed  CAS  Google Scholar 

  2. Bak LK, Schousboe A, Waagepetersen HS (2006) The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98:641–653

    Article  PubMed  CAS  Google Scholar 

  3. Hamberger A, Chiang GH, Nylén G, Scheff SW, Cotman CW (1979) Glutamate as a CNS transmitter. Evaluation of glucose and glutamine as precursors for the synthesis of preferentially relased glutamate. Brain Res 168:513–530

    Article  PubMed  CAS  Google Scholar 

  4. Erecinska M, Zaleska M, Nelson D, Nissim I, Yudkoff M (1988) Glucose and the metabolism of [15N] glutamate in synaptosomes. J Neurochem 51:892–902

    Article  PubMed  CAS  Google Scholar 

  5. Daikhin Y, Yudkoff M (2000) Compartmentation of brain glutamate metabolism in neurons and glia. J Nutr 130:1026S–1031S

    PubMed  CAS  Google Scholar 

  6. Takanaga H, Tokuda N, Ohtsuki S, Hosoya K, Terasaki T (2002) ATA2 is predominantly expressed as system A at the blood-brain barrier and acts as brain-to-blood efflux transport for L-proline. Mol Pharmacol 61:1289–1296

    Article  PubMed  CAS  Google Scholar 

  7. Waniewski RA, Martin DL (1986) Exogenous glutamate is metabolized to glutamine and exported by rat primary astrocyte cultures. J Neurochem 47:304–313

    Article  PubMed  CAS  Google Scholar 

  8. Laake JH, Takumi Y, Eidet J, Torgner IA, Roberg B, Kvamme E et al (1999) Postembedding immunogold labelling reveals subcellular localization and pathway-specific enrichment of phosphate activated glutaminase in rat cerebellum. Neuroscience 88:1137–1151

    Article  PubMed  CAS  Google Scholar 

  9. Schousboe A, Hertz L, Svenneby G, Kvamme E (1979) Phosphate activated glutaminase activity and glutamine uptake in primary cultures of astrocytes. J Neurochem 32:943–950

    Article  PubMed  CAS  Google Scholar 

  10. Palacín M, Estévez R, Bertran J, Zorzano A (1998) Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev 78:969–1054

    PubMed  Google Scholar 

  11. Oxender D, Christensen H (1963) Distinct mediating systems for the transport of neutral amino acids by the Ehrlich cell. J Biol Chem 238:3686–3699

    PubMed  CAS  Google Scholar 

  12. Christensen HN, Liang M (1965) An amino acid transport system of unassigned function in the Ehrlich ascites tumor cell. J Biol Chem 240:3601–3608

    PubMed  CAS  Google Scholar 

  13. Chaudhry FA, Schmitz D, Reimer RJ, Larsson P, Gray AT, Nicoll R et al (2002) Glutamine uptake by neurons: interaction of protons with System A transporters. J Neurosci 22:62–72

    PubMed  CAS  Google Scholar 

  14. Kilberg MS (1986) System A-mediated amino acid transport:metabolic control at the plasma membrane. Trends Biochem Sci 11:183–186

    Article  CAS  Google Scholar 

  15. McGivan JD, Pastor-Anglada M (1994) Regulatory and molecular aspects of mammalian amino acid transport. Biochem J 15:321–334

    Google Scholar 

  16. Moule SK, McGivan JD (1987) Epidermal growth factor, like glucagon, exerts a short-term stimulation of alanine transport in rat hepatocytes. Biochem J 247:233–235

    PubMed  CAS  Google Scholar 

  17. Armano S, Coco S, Bacci A, Pravettoni E, Schenk U, Verderio C et al (2002) Localization and functional relevance of system A neutral amino acid transporters in cultured hippocampal neurons. J Biol Chem 277:10467–10473

    Article  PubMed  CAS  Google Scholar 

  18. Mackenzie B, Schäfer MK, Erickson JD, Hediger MA, Weihe E, Varoqui H (2003) Functional properties and cellular distribution of the System A glutamine transporter SNAT1 support specialized roles in central neurons. J Biol Chem 278:23720–23730

    Article  PubMed  CAS  Google Scholar 

  19. Yao D, Mackenzie B, Ming H, Varoqui H, Zhu H, Hediger MA et al (2000) A novel System A isoform mediating Na+/neutral amino acid cotransport. J Biol Chem 275:22790–22797

    Article  PubMed  CAS  Google Scholar 

  20. González-González IM, Cubelos B, Giménez C, Zafra F (2005) Immunohistochemical localization of the amino acid transporter SNAT2 in the rat brain. Neuroscience 130:61–73

    Article  PubMed  Google Scholar 

  21. Arriza JL, Kavanaugh MP, Fairman WA, Wu YN, Murdoch GH, North RA et al (1993) Cloning and expression of a human neutral amino acid transporter with structural similarity to the glutamate transporter gene family. J Biol Chem 268:15329–15332

    PubMed  CAS  Google Scholar 

  22. Shafqat S, Tamarappoo BK, Kilberg MS, Puranam RS, McNamara JO, Guadano-Ferraz A et al (1993) Cloning and expression of a novel Na+- dependent neutral amino acid transporter structurally related to mammalian Na+/glutamate cotransporters. J Biol Chem 268:15351–15355

    PubMed  CAS  Google Scholar 

  23. Sonnewald U, Westergaard N, Schousboe A, Svendes JS, Unsgard G, Petersen SB (1993) Direct demonstration by [13C] NMR spectroscopy that glutamine from astrocytes is a precursor for GABA synthesis in neurons. Neurochem Int 22:19–29

    Article  PubMed  CAS  Google Scholar 

  24. Bode BP, Souba WW (1994) Modulation of cellular proliferation alters glutamine transport and metabolism in human hepatoma cells. Ann Surg 220:411–422

    Article  PubMed  CAS  Google Scholar 

  25. Fuchs BC, Bode BP (2005) Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime? Semin Canc Biol 15:254–266

    Article  CAS  Google Scholar 

  26. Wasa M, Wang HS, Okada A (2002) Characterization of L-glutamine transport by a human neuroblastoma cell line. Am J Physiol Cell Physiol 282:C1246–C1253

    PubMed  CAS  Google Scholar 

  27. Bröer A, Brookes N, Ganapathy V, Dimmer KS, Wagner CA, Lang F et al (1999) The astroglial ASCT2 amino acid transporter as a mediator of glutamine efflux. J Neurochem 73:2184–2194

    PubMed  Google Scholar 

  28. Chaudhry FA, Reimer RJ, Krizaj D, Barber D, Storm-Mathisen J, Copenhagen DR et al (1999) Molecular analysis of system N suggests novel physiological roles in nitrogen metabolism and synaptic transmission. Cell 99:769–780

    Article  PubMed  CAS  Google Scholar 

  29. Boulland JL, Osen KK, Levy LM, Danbolt NC, Edwards RH, Storm-Mathisen J et al (2002) Cell-specific expression of the glutamine transporter SN1 suggests differences in dependence on the glutamine cycle. Eur J Neurosci 15:1615–1631

    Article  PubMed  Google Scholar 

  30. Nakanishi T, Kekuda R, Fei YJ, Hatanaka T, Sugawara M, Martindale RG et al (2001) Cloning and functional characterization of a new subtype of the amino acid transport system N. Am J Physiol Cell Physiol 281:C1757–C1768

    PubMed  CAS  Google Scholar 

  31. Nakanishi T, Sugawara M, Huang W, Martindale RG, Leibach FH, Ganapathy ME et al (2001) Structure, function, and tissue expression pattern of human SN2, a subtype of the amino acid transport system N. Biochem Biophys Res Commun 281:1343–13488

    Article  PubMed  CAS  Google Scholar 

  32. Segawa H, Fukasawa Y, Miyamoto K, Takeda E, Endou H, Kanai Y (1999) Identification and functional characterization of a Na+ – independent neutral amino acid transporter with broad substrate selectivity. J Biol Chem 274:23740–23745

    Article  Google Scholar 

  33. Mastroberardino L, Spindler B, Pfeiffer R, Skelly PJ, Loffing J, Shoemaker CB et al (1998) Amino-acid transport by heterodimers of 4F2hc/CD98 and members of a permease family. Nature 395:288–291

    Article  PubMed  CAS  Google Scholar 

  34. Nagaraja TN, Brookes N (1996) Glutamine transport in mouse cerebral astrocytes. J Neurochem 66:1665–1674

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This chapter was supported by grants R01ES010563 (MA) and R01ES07331 (MA) from the National Institutes of Health and National Institute of Environmental Health Sciences; and grant W81XWH-05-0239 from the Department of Defense (MA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Sidoryk-Węgrzynowicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sidoryk-Węgrzynowicz, M., Aschner, M. (2011). Culture Models for the Study of Amino Acid Transport and Metabolism. In: Aschner, M., Suñol, C., Bal-Price, A. (eds) Cell Culture Techniques. Neuromethods, vol 56. Humana Press. https://doi.org/10.1007/978-1-61779-077-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-077-5_21

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-076-8

  • Online ISBN: 978-1-61779-077-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics