Skip to main content

Intact-Protein Analysis System for Discovery of Serum-Based Disease Biomarkers

  • Protocol
  • First Online:
Book cover Serum/Plasma Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 728))

Abstract

Profiling of serum and plasma proteins has substantial relevance to the discovery of circulating disease biomarkers. However, the extreme complexity and vast dynamic range of protein abundance in serum and plasma present a formidable challenge for protein analysis. Thus, integration of multiple technologies is required to achieve high-resolution and high-sensitivity proteomic analysis of serum or plasma. In this chapter, we describe an orthogonal multidimensional intact-protein analysis system (IPAS) (Wang et al., Mol Cell Proteomics 4:618–625, 2005) coupled with protein tagging (Faca et al., J Proteome Res 5:2009–2018, 2006) to profile the serum and plasma proteomes quantitatively, which we have applied in our biomarker discovery studies (Katayama et al., Genome Med 1:47, 2009; Faca et al., PLoS Med 5:e123, 2008; Zhang et al. Genome Biol 9:R93, 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang Q., menon R., Deutsch E.W. et al. (2008). A mouse plasma peptide atlas as a resource for disease proteomics. Crenome Biol. 9, R93.

    Google Scholar 

  2. Klose, J. (1975). Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Hum. Genet. 26, 231–243.

    Google Scholar 

  3. O’Farrell, P. H. (1975). High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007–4021.

    PubMed  Google Scholar 

  4. Hanash, S. M. (2000). Biomedical applications of two-dimensional electrophoresis using immobilized pH gradients: Current status. Electrophoresis. 21, 1202–1209.

    Article  PubMed  CAS  Google Scholar 

  5. Wang, H., Clouthier, S.G., Galchev, V. et al. (2005). Intact-protein-based high-resolution three-dimensional quantitative analysis system for proteome profiling of biological fluids. Mol Cell Proteomics. 4, 618–625.

    Article  PubMed  CAS  Google Scholar 

  6. Stasyk, T., Huber, L. A. (2004). Zooming in: Fractionation strategies in proteomics. Proteomics. 4, 3704–3716.

    Article  PubMed  CAS  Google Scholar 

  7. Betgovargez, E., Knudson, V., Simonian, M. H. (2005). Characterization of Proteins in the Human Serum Proteome. J Biomol Tech. 16, 306–310.

    PubMed  Google Scholar 

  8. Sheng, S., Chen, D., Van Eyk, J. E. (2006). Multidimensional liquid chromatography separation of intact proteins by chromatographic focusing and reversed phase of the human serum proteome: optimization and protein database. Mol Cell Proteomics. 5, 26–34.

    PubMed  CAS  Google Scholar 

  9. Ke, C. Y., Geng, X. D. (2008). A new chromatographic method for fast separation of active proteins. Chinese Science Bulletin. 53, 1113–1116.

    Article  CAS  Google Scholar 

  10. Dugo, P., Cacciola, F., Kumm, T., Dugo, G., Mondello, L. (2008). Comprehensive multidimensional liquid chromatography: theory and applications. J Chromatogr A. 1184, 353–368.

    Article  PubMed  CAS  Google Scholar 

  11. Katayama, H., Paczesny, S., Prentice, R. et al. (2009). Application of serum proteomics to the Women’s Health Initiative conjugated equine estrogens trial reveals a multitude of effects relevant to clinical findings. Genome Med. 1, 47.

    Article  PubMed  Google Scholar 

  12. Faca, V.M., Song, K. S., Wang, H. et al. (2008). A mouse to human search for plasma ­proteome changes associated with pancreatic tumor development. PLoS Med. 5, e123.

    Article  PubMed  Google Scholar 

  13. Pitteri, S.J., JeBailey, L., Faça, V. M. et al. (2009). Integrated proteomic analysis of human cancer cells and plasma from tumor bearing mice for ovarian cancer biomarker discovery. PLoS One. 4, e7916.

    Article  PubMed  Google Scholar 

  14. Pitteri, S.J., Faca, V. M., Kelly-Spratt, K. S. et al. (2008). Plasma proteome profiling of a mouse model of breast cancer identifies a set of up-regulated proteins in common with human breast cancer cells. J Proteome Res. 7, 1481–1489.

    Article  PubMed  CAS  Google Scholar 

  15. Rauch, A., Bellew, M., Eng, J. et al. (2006). Computational Proteomics Analysis System (CPAS): an extensible, open-source analytic system for evaluating and publishing proteomic data and high throughput biological experiments. J Proteome Res. 5, 112–121.

    Article  PubMed  CAS  Google Scholar 

  16. Maclean, B., Eng, J. K., Beavis, R. C., McIntosh, M. (2006). General framework for developing and evaluating database scoring algorithms using the TANDEM search engine. Bioinformatics. 22, 2830–2832.

    Article  PubMed  CAS  Google Scholar 

  17. Nesvizhskii, A. I., Keller, A., Kolker, E. & Aebersold, R. (2003). A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75, 4646–4658.

    Article  PubMed  CAS  Google Scholar 

  18. Faca, V., Coram, M., Phanstiel, D. et al. (2006). Quantitative analysis of acrylamide labeled serum proteins by LC-MS/MS. J Proteome Res. 5, 2009–2018.

    Article  PubMed  CAS  Google Scholar 

  19. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 748, 248–254.

    Article  Google Scholar 

  20. Keller, A., Nesvizhskii, A. I., Kolker, E., Aebersold, R. (2002). Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 74, 5383–5392.

    Google Scholar 

  21. Kümin, A., Christine Huber, C., Thomas Rülicke, T., Wolf, E., Werner, E. (2006). Peroxiredoxin 6 Is a Potent Cytoprotective Enzyme in the Epidermis. Am J Pathol. 169, 1194–1205.

    Article  PubMed  Google Scholar 

  22. Chang, X. Z., Li, D. Q., Hou, Y. F. et al. (2007). Identification of the functional role of peroxiredoxin 6 in the progression of breast cancer. Breast Cancer Res. 9, R76.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Hanash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wang, H., Hanash, S. (2011). Intact-Protein Analysis System for Discovery of Serum-Based Disease Biomarkers. In: Simpson, R., Greening, D. (eds) Serum/Plasma Proteomics. Methods in Molecular Biology, vol 728. Humana Press. https://doi.org/10.1007/978-1-61779-068-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-068-3_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-067-6

  • Online ISBN: 978-1-61779-068-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics