Skip to main content

Brain Tumors

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 727))

Abstract

For most cancers, PET is essentially a diagnostic tool. For brain tumors, PET has got its main contribution at the level of the therapeutic management. Indeed, specific reasons render the therapeutic management of brain tumors, especially gliomas, a real challenge. Although some gliomas may appear well-delineated on conventional neuroimaging such as CT and MRI, they are by nature infiltrating neoplasms and the interface between tumor and normal brain tissue may not be accurately defined. Moreover, gliomas may present as ill-defined lesions for which various MRI sequences combination does not provide a unique contour for tumor delineation. Also, gliomas are often histologically heterogeneous with anaplastic areas evolving within a low-grade tumor, and contrast-enhancement on CT or MRI does not represent a good marker for anaplastic tissue detection. Finally, assessment of tumor residue, recurrence, or progression, may be altered by different signals related to inflammation or adjuvant therapies, and contrast enhancement on CT and MRI is not an appropriate marker at the postoperative or posttherapeutic stage. These limitations of conventional neuroimaging in detecting tumor tissue, delineating tumor extent and evidencing anaplastic changes, lead to potential inaccuracy in lesion targeting at different steps of the management (diagnostic, surgical, postoperative, and posttherapeutic stages). Molecular information provided by PET has proved helpful to supplement morphological imaging data in this context. F-18 FDG and amino-acid tracers such as C-11 methionine (C-11 MET) provide complementary metabolic data that are independent from the anatomical MR information. These tracers help in the definition of glioma extension, detection of anaplastic areas, and postoperative follow-up. Additionally, PET data have a prognostic value independently of histology. To take advantage of PET data in glioma treatment, PET might be integrated in the planning of image-guided biopsy, resection, and radiosurgery.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Louis, D.N., Ohgaki, H., Wiestler, O.D., Cavenee, W.K., Burger, P.C., Jouvet, A., et al. (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114, 97–109.

    PubMed  Google Scholar 

  2. Pirotte, B.J., Lubansu, A., Massager, N., Wikler, D., Goldman, S., Levivier, M. (2007) Results of positron emission tomography guidance and reassessment of the utility of and indications for stereotactic biopsy in children with infiltrative brainstem tumors. J Neurosurg 107, 392–9.

    PubMed  Google Scholar 

  3. Mariani, L., Siegenthaler, P., Guzman, R., Friedrich, D., Fathi, A.R., Ozdoba, C., et al. (2004) The impact of tumour volume and surgery on the outcome of adults with supratentorial WHO grade II astrocytomas and oligoastrocytomas. Acta Neurochir (Wien) 146, 441–8.

    CAS  Google Scholar 

  4. De Witte, O., Levivier, M., Violon, P., Salmon, I., Damhaut, P., Wikler, D., Jr., et al. (1996) Prognostic value positron emission tomography with [18F]fluoro-2-deoxy-D-glucose in the low-grade glioma. Neurosurgery 39, 470–6; discussion 476–7.

    PubMed  Google Scholar 

  5. De Witte, O., Goldberg, I., Wikler, D., Rorive, S., Damhaut, P., Monclus, M., et al. (2001) Positron emission tomography with injection of methionine as a prognostic factor in glioma. J Neurosurg 95, 746–50.

    PubMed  Google Scholar 

  6. Daneyemez, M., Gezen, F., Canakci, Z., Kahraman, S. (1998) Radical surgery and reoperation in supratentorial malignant glial tumors. Minim Invasive Neurosurg 41, 209–13.

    PubMed  CAS  Google Scholar 

  7. Kowalczuk, A., Macdonald, R.L., Amidei, C., Dohrmann, G., 3rd, Erickson, R.K., Hekmatpanah, J., et al. (1997) Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas. Neurosurgery 41, 1028–36; discussion 1036–8.

    PubMed  CAS  Google Scholar 

  8. Yokoyama, J., Ikawa, H., Endow, M., Fuchimoto, Y., Watanabe, K., Hosoya, R., et al. (1995) The role of surgery in advanced neuroblastoma. Eur J Pediatr Surg 5, 23–6.

    PubMed  CAS  Google Scholar 

  9. Hess, K.R. (1999) Extent of resection as a prognostic variable in the treatment of gliomas. J Neurooncol 42, 227–31.

    PubMed  CAS  Google Scholar 

  10. Pirotte, B., Levivier, M., Goldman, S., Massager, N., Wikler, D., De Witte, O., et al. (2009) PET-guided volumetric resection of supratentorial high grade gliomas: A survival analysis in 66 consecutive patients. Neuro­surgery 64(3), 471–81; discussion 481.

    PubMed  Google Scholar 

  11. Lacroix, M., Abi-Said, D., Fourney, D.R., Gokaslan, Z.L., Shi, W., DeMonte, F., et al. (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95, 190–8.

    PubMed  CAS  Google Scholar 

  12. Stummer, W., Reulen, H.J., Meinel, T., Pichlmeier, U., Schumacher, W., Tonn, J.C., et al. (2008) Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery 62, 564–76; discussion 564–76.

    PubMed  Google Scholar 

  13. Sanai, N., Berger, M.S. (2008) Glioma extent of resection and its impact on patient outcome. Neurosurgery 62, 753–64; discussion 264–6.

    PubMed  Google Scholar 

  14. Pollack, I.F. (1999) The role of surgery in pediatric gliomas. J Neurooncol 42, 271–88.

    PubMed  CAS  Google Scholar 

  15. Pirotte, B., Acerbi, F., Lubansu, A., Goldman, S., Brotchi, J., Levivier, M. (2007) PET imaging in the surgical management of pediatric brain tumors. Childs Nerv Syst 23, 739–51.

    PubMed  Google Scholar 

  16. Black, P.M. (1991) Brain tumor. Part 2. N Engl J Med 324, 1555–64.

    PubMed  CAS  Google Scholar 

  17. Black, P.M. (1991) Brain tumors. Part 1. N Engl J Med 324, 1471–6.

    PubMed  CAS  Google Scholar 

  18. Albright, A.L. (1993) Pediatric brain tumors. CA Cancer J Clin 43, 272–88.

    PubMed  CAS  Google Scholar 

  19. Foreman, N.K., Love, S., Gill, S.S., Coakham, H.B. (1997) Second-look surgery for incompletely resected fourth ventricle ependymomas: technical case report. Neurosurgery 40, 856–60; discussion 860.

    PubMed  CAS  Google Scholar 

  20. Larson, D.A., Gutin, P.H., McDermott, M., Lamborn, K., Sneed, P.K., Wara, W.M., et al. (1996) Gamma knife for glioma: selection factors and survival. Int J Radiat Oncol Biol Phys 36, 1045–53.

    PubMed  CAS  Google Scholar 

  21. Pirotte, B., Levivier, M., Morelli, D., Van Bogaert, P., Detemmerman, D., David, P., et al. (2005) Positron emission tomography for the early postsurgical evaluation of pediatric brain tumors. Childs Nerv Syst 21, 294–300.

    PubMed  Google Scholar 

  22. Levivier, M., Goldman, S., Bidaut, L.M., Luxen, A., Stanus, E., Przedborski, S., et al. (1992) Positron emission tomography-guided stereotactic brain biopsy. Neurosurgery 31, 792–7; discussion 797.

    PubMed  CAS  Google Scholar 

  23. Levivier, M., Goldman, S., Pirotte, B., Brucher, J.M., Baleriaux, D., Luxen, A., et al. (1995) Diagnostic yield of stereotactic brain biopsy guided by positron emission tomography with [18F]fluorodeoxyglucose. J Neurosurg 82, 445–52.

    PubMed  CAS  Google Scholar 

  24. Chandrasoma, P.T., Smith, M.M., Apuzzo, M.L. (1989) Stereotactic biopsy in the diagnosis of brain masses: comparison of results of biopsy and resected surgical specimen. Neurosurgery 24, 160–5.

    PubMed  CAS  Google Scholar 

  25. Feiden, W., Steude, U., Bise, K., Gundisch, O. (1991) Accuracy of stereotactic brain tumor biopsy: comparison of the histologic findings in biopsy cylinders and resected tumor tissue. Neurosurg Rev 14, 51–6.

    PubMed  CAS  Google Scholar 

  26. Glantz, M.J., Burger, P.C., Herndon, J.E., 2nd, Friedman, A.H., Cairncross, J.G., Vick, N.A., et al. (1991) Influence of the type of surgery on the histologic diagnosis in patients with anaplastic gliomas. Neurology 41, 1741–4.

    PubMed  CAS  Google Scholar 

  27. Pirotte, B., Goldman, S., Van Bogaert, P., David, P., Wikler, D., Rorive, S., et al. (2005) Integration of [11C]methionine-positron emission tomographic and magnetic resonance imaging for image-guided surgical resection of infiltrative low-grade brain tumors in children. Neurosurgery 57, 128–39; discussion 128–39.

    PubMed  Google Scholar 

  28. Pirotte, B., Goldman, S., Dewitte, O., Massager, N., Wikler, D., Lefranc, F., et al. (2006) Integrated positron emission tomography and magnetic resonance imaging-guided resection of brain tumors: a report of 103 consecutive procedures. J Neurosurg 104, 238–53.

    PubMed  Google Scholar 

  29. Wong, T.Z., van der Westhuizen, G.J., Coleman, R.E. (2002) Positron emission tomography imaging of brain tumors. Neuroimaging Clin N Am 12, 615–26.

    PubMed  Google Scholar 

  30. Paulus, W., Peiffer, J. (1989) Intratumoral histologic heterogeneity of gliomas. A quantitative study. Cancer 64, 442–7.

    PubMed  CAS  Google Scholar 

  31. Essig, M., Metzner, R., Bonsanto, M., Hawighorst, H., Debus, J., Tronnier, V., et al. (2001) Postoperative fluid-attenuated inversion recovery MR imaging of cerebral gliomas: initial results. Eur Radiol 11, 2004–10.

    PubMed  CAS  Google Scholar 

  32. Braun, V., Dempf, S., Tomczak, R., Wunderlich, A., Weller, R., Richter, H.P. (2000) Functional cranial neuronavigation. Direct integration of fMRI and PET data. J Neuroradiol 27, 157–63.

    PubMed  CAS  Google Scholar 

  33. Pauleit, D., Floeth, F., Hamacher, K., Riemenschneider, M.J., Reifenberger, G., Muller, H.W., et al. (2005) O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 128, 678–87.

    PubMed  Google Scholar 

  34. Law, M., Yang, S., Wang, H., Babb, J.S., Johnson, G., Cha, S., et al. (2003) Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 24, 1989–98.

    PubMed  Google Scholar 

  35. Di Chiro, G. (1987) Positron emission tomography using [18F] fluorodeoxyglucose in brain tumors. A powerful diagnostic and prognostic tool. Invest Radiol 22, 360–71.

    PubMed  Google Scholar 

  36. Alavi, J.B., Alavi, A., Chawluk, J., Kushner, M., Powe, J., Hickey, W., et al. (1988) Positron emission tomography in patients with glioma. A predictor of prognosis. Cancer 62, 1074–8.

    PubMed  CAS  Google Scholar 

  37. Coleman, R.E., Hoffman, J.M., Hanson, M.W., Sostman, H.D., Schold, S.C. (1991) Clinical application of PET for the evaluation of brain tumors. J Nucl Med 32, 616–22.

    PubMed  CAS  Google Scholar 

  38. Goldman, S., Levivier, M., Pirotte, B., Brucher, J.M., Wikler, D., Damhaut, P., et al. (1996) Regional glucose metabolism and histopathology of gliomas. A study based on positron emission tomography-guided stereotactic biopsy. Cancer 78, 1098–106.

    PubMed  CAS  Google Scholar 

  39. Chen, W. (2007) Clinical applications of PET in brain tumors. J Nucl Med 48, 1468–81.

    PubMed  Google Scholar 

  40. Ishizu, K., Sadato, N., Yonekura, Y., Nishizawa, S., Magata, Y., Tamaki, N., et al. (1994) Enhanced detection of brain tumors by [18F]fluorodeoxyglucose PET with glucose loading. J Comput Assist Tomogr 18, 12–5.

    PubMed  CAS  Google Scholar 

  41. Spence, A.M., Muzi, M., Mankoff, D.A., O’Sullivan, S.F., Link, J.M., Lewellen, T.K., et al. (2004) 18F-FDG PET of gliomas at delayed intervals: improved distinction between tumor and normal gray matter. J Nucl Med 45, 1653–9.

    PubMed  Google Scholar 

  42. Becherer, A., Karanikas, G., Szabo, M., Zettinig, G., Asenbaum, S., Marosi, C., et al. (2003) Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine. Eur J Nucl Med Mol Imaging 30, 1561–7.

    PubMed  CAS  Google Scholar 

  43. Weber, W.A., Wester, H.J., Grosu, A.L., Herz, M., Dzewas, B., Feldmann, H.J., et al. (2000) O-(2-[18F]fluoroethyl)-L-tyrosine and L-[methyl-11C]methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med 27, 542–9.

    PubMed  CAS  Google Scholar 

  44. Lahoutte, T., Caveliers, V., Camargo, S.M., Franca, R., Ramadan, T., Veljkovic, E., et al. (2004) SPECT and PET amino acid tracer influx via system L (h4F2hc-hLAT1) and its transstimulation. J Nucl Med 45, 1591–6.

    PubMed  CAS  Google Scholar 

  45. Laique, S., Egrise, D., Monclus, M., Schmitz, F., Garcia, C., Lemaire, C., et al. (2006) L-amino acid load to enhance PET differentiation between tumor and inflammation: an in vitro study on (18)F-FET uptake. Contrast Media Mol Imaging 1, 212–20.

    PubMed  CAS  Google Scholar 

  46. Sadeghi, N., Salmon, I., Decaestecker, C., Levivier, M., Metens, T., Wikler, D., et al. (2007) Stereotactic comparison among cerebral blood volume, methionine uptake, and histopathology in brain glioma. AJNR Am J Neuroradiol 28, 455–61.

    PubMed  CAS  Google Scholar 

  47. Goldman, S., Levivier, M., Pirotte, B., Brucher, J.M., Wikler, D., Damhaut, P., et al. (1997) Regional methionine and glucose uptake in high-grade gliomas: a comparative study on PET-guided stereotactic biopsy. J Nucl Med 38, 1459–62.

    PubMed  CAS  Google Scholar 

  48. Chen, W., Delaloye, S., Silverman, D.H., Geist, C., Czernin, J., Sayre, J., et al. (2007) Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: a pilot study. J Clin Oncol 25, 4714–21.

    PubMed  CAS  Google Scholar 

  49. Hatakeyam, T., Kawai, N., Nishiyama, Y., Yamamoto, Y., Sasakawa, Y., Ichikawa, T., et al. (2008) (11)C-methionine (MET) and (18)F-fluorothymidine (FLT) PET in patients with newly diagnosed glioma. Eur J Nucl Med Mol Imaging 35, 2009–17.

    Google Scholar 

  50. Saga, T., Kawashima, H., Araki, N., Takahashi, J.A., Nakashima, Y., Higashi, T., et al. (2006) Evaluation of primary brain tumors with FLT-PET: usefulness and limitations. Clin Nucl Med 31, 774–80.

    PubMed  Google Scholar 

  51. Kwee, S.A., Ko, J.P., Jiang, C.S., Watters, M.R., Coel, M.N. (2007) Solitary brain lesions enhancing at MR imaging: evaluation with fluorine 18 fluorocholine PET. Radiology 244, 557–65.

    PubMed  Google Scholar 

  52. Xiangsong, Z., Changhong, L., Weian, C., Dong, Z. (2006) PET Imaging of cerebral astrocytoma with 13N-ammonia. J Neurooncol 78, 145–51.

    PubMed  Google Scholar 

  53. Mineura, K., Sasajima, T., Kowada, M., Ogawa, T., Hatazawa, J., Shishido, F., et al. (1994) Perfusion and metabolism in predicting the survival of patients with cerebral gliomas. Cancer 73, 2386–94.

    PubMed  CAS  Google Scholar 

  54. Sadeghi, N., D’Haene, N., Decaestecker, C., Levivier, M., Metens, T., Maris, C., et al. (2008) Apparent diffusion coefficient and cerebral blood volume in brain gliomas: relation to tumor cell density and tumor microvessel density based on stereotactic biopsies. AJNR Am J Neuroradiol 29, 476–82.

    PubMed  CAS  Google Scholar 

  55. Bruehlmeier, M., Roelcke, U., Schubiger, P.A., Ametamey, S.M. (2004) Assessment of hypoxia and perfusion in human brain tumors using PET with 18F-fluoromisonidazole and 15O-H2O. J Nucl Med 45, 1851–9.

    PubMed  Google Scholar 

  56. Cher, L.M., Murone, C., Lawrentschuk, N., Ramdave, S., Papenfuss, A., Hannah, A., et al. (2006) Correlation of hypoxic cell fraction and angiogenesis with glucose metabolic rate in gliomas using 18F-fluoromisonidazole, 18F-FDG PET, and immunohistochemical studies. J Nucl Med 47, 410–8.

    PubMed  CAS  Google Scholar 

  57. Spence, A.M., Muzi, M., Swanson, K.R., O’Sullivan, F., Rockhill, J.K., Rajendran, J.G., et al. (2008) Regional hypoxia in glioblastoma multiforme quantified with 18F]fluoromisonidazole positron emission tomography before radiotherapy: correlation with time to progression and survival. Clin Cancer Res 14, 2623–30.

    PubMed  CAS  Google Scholar 

  58. Ullrich, R., Backes, H., Li, H., Kracht, L., Miletic, H., Kesper, K., et al. (2008) Glioma proliferation as assessed by 3’-fluoro-3’-deoxy-L-thymidine positron emission tomography in patients with newly diagnosed high-grade glioma. Clin Cancer Res 14, 2049–55.

    PubMed  CAS  Google Scholar 

  59. Tang, B.N., Sadeghi, N., Branle, F., De Witte, O., Wikler, D., Goldman, S. (2005) Semi-quantification of methionine uptake and flair signal for the evaluation of chemotherapy in low-grade oligodendroglioma. J Neurooncol 71, 161–8.

    PubMed  CAS  Google Scholar 

  60. Daumas-Duport, C., Scheithauer, B.W., Kelly, P.J. (1987) A histologic and cytologic method for the spatial definition of gliomas. Mayo Clin Proc 62, 435–49.

    PubMed  CAS  Google Scholar 

  61. Kelly, P.J., Daumas-Duport, C., Scheithauer, B.W., Kall, B.A., Kispert, D.B. (1987) Stereotactic histologic correlations of computed tomography- and magnetic resonance imaging-defined abnormalities in patients with glial neoplasms. Mayo Clin Proc 62, 450–9.

    PubMed  CAS  Google Scholar 

  62. Kracht, L.W., Miletic, H., Busch, S., Jacobs, A.H., Voges, J., Hoevels, M., et al. (2004) Delineation of brain tumor extent with [11C]L-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res 10, 7163–70.

    PubMed  CAS  Google Scholar 

  63. Tang, B.N., Van Simaeys, G., Devriendt, D., Sadeghi, N., Dewitte, O., Massager, N., et al. (2008) Three-dimensional Gaussian model to define brain metastasis limits on (11)C-methionine PET. Radiother Oncol 89, 270–7.

    PubMed  CAS  Google Scholar 

  64. Delbeke, D., Meyerowitz, C., Lapidus, R.L., Maciunas, R.J., Jennings, M.T., Moots, P.L., et al. (1995) Optimal cutoff levels of F-18 fluorodeoxyglucose uptake in the differentiation of low-grade from high-grade brain tumors with PET. Radiology 195, 47–52.

    PubMed  CAS  Google Scholar 

  65. Rosenfeld, S.S., Hoffman, J.M., Coleman, R.E., Glantz, M.J., Hanson, M.W., Schold, S.C. (1992) Studies of primary central nervous system lymphoma with fluorine-18-fluorodeoxyglucose positron emission tomography. J Nucl Med 33, 532–6.

    PubMed  CAS  Google Scholar 

  66. Kawai, N., Nishiyama, Y., Miyake, K., Tamiya, T., Nagao, S. (2005) Evaluation of tumor FDG transport and metabolism in primary central nervous system lymphoma using [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) kinetic analysis. Ann Nucl Med 19, 685–90.

    PubMed  Google Scholar 

  67. Karantanis, D., O’Eill, B.P., Subramaniam, R.M., Witte, R.J., Mullan, B.P., Nathan, M.A., et al. (2007) 18F-FDG PET-CT in primary central nervous system lymphoma in HIV-negative patients. Nucl Med Commun 28, 834–41.

    PubMed  Google Scholar 

  68. Pirotte, B., Levivier, M., Goldman, S., Brucher, J.M., Brotchi, J., Hildebrand, J. (1997) Glucocorticoid-induced long-term remission in primary cerebral lymphoma: case report and review of the literature. J Neurooncol 32, 63–9.

    PubMed  CAS  Google Scholar 

  69. Bergstrom, M., Ericson, K., Hagenfeldt, L., Mosskin, M., von Holst, H., Noren, G., et al. (1987) PET study of methionine accumulation in glioma and normal brain tissue: competition with branched chain amino acids. J Comput Assist Tomogr 11, 208–13.

    PubMed  CAS  Google Scholar 

  70. Derlon, J.M., Bourdet, C., Bustany, P., Chatel, M., Theron, J., Darcel, F., et al. (1989) [11C]L-methionine uptake in gliomas. Neurosurgery 25, 720–8.

    PubMed  CAS  Google Scholar 

  71. Mosskin, M., von Holst, H., Bergstrom, M., Collins, V.P., Eriksson, L., Johnstrom, P., et al. (1987) Positron emission tomography with 11C-methionine and computed tomography of intracranial tumours compared with histopathologic examination of multiple biopsies. Acta Radiol 28, 673–81.

    PubMed  CAS  Google Scholar 

  72. Kaplan, A.M., Bandy, D.J., Manwaring, K.H., Chen, K., Lawson, M.A., Moss, S.D., et al. (1999) Functional brain mapping using positron emission tomography scanning in preoperative neurosurgical planning for pediatric brain tumors. J Neurosurg 91, 797–803.

    PubMed  CAS  Google Scholar 

  73. Utriainen, M., Metsahonkala, L., Salmi, T.T., Utriainen, T., Kalimo, H., Pihko, H., et al. (2002) Metabolic characterization of childhood brain tumors: comparison of 18F-fluorodeoxy­glucose and 11C-methionine positron emission tomography. Cancer 95, 1376–86.

    PubMed  Google Scholar 

  74. Borgwardt, L., Hojgaard, L., Carstensen, H., Laursen, H., Nowak, M., Thomsen, C., et al. (2005) Increased fluorine-18 2-fluoro-2-deoxy-D-glucose (FDG) uptake in childhood CNS tumors is correlated with malignancy grade: a study with FDG positron emission tomography/magnetic resonance imaging coregistration and image fusion. J Clin Oncol 23, 3030–7.

    PubMed  Google Scholar 

  75. Pirotte, B., Lubansu, A., Massager, N., Wikler, D., Van Bogaert, P., Levivier, M., et al. (2010) Clinical interest of integrating positron emission tomography imaging in the workup of 55 children with incidentally diagnosed brain lesions. J Neurosurg Pediatr5, 479–85.

    PubMed  Google Scholar 

  76. Sasaki, M., Kuwabara, Y., Yoshida, T., Fukumura, T., Morioka, T., Nishio, S., et al. (1998) Carbon-11-methionine PET in focal cortical dysplasia: a comparison with fluorine-18-FDG PET and technetium-99m-ECD SPECT. J Nucl Med 39, 974–7.

    PubMed  CAS  Google Scholar 

  77. De Witte, O., Lefranc, F., Levivier, M., Salmon, I., Brotchi, J., Goldman, S. (2000) FDG-PET as a prognostic factor in high-grade astrocytoma. J Neurooncol 49, 157–63.

    PubMed  Google Scholar 

  78. Ribom, D., Eriksson, A., Hartman, M., Engler, H., Nilsson, A., Langstrom, B., et al. (2001) Positron emission tomography (11)C-methionine and survival in patients with low-grade gliomas. Cancer 92, 1541–9.

    PubMed  CAS  Google Scholar 

  79. Kim, S., Chung, J.K., Im, S.H., Jeong, J.M., Lee, D.S., Kim, D.G., et al. (2005) 11C-methionine PET as a prognostic marker in patients with glioma: comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging 32, 52–9.

    PubMed  CAS  Google Scholar 

  80. Floeth, F.W., Pauleit, D., Sabel, M., Stoffels, G., Reifenberger, G., Riemenschneider, M.J., et al. (2007) Prognostic value of O-(2-18F-fluoroethyl)-L-tyrosine PET and MRI in low-grade glioma. J Nucl Med 48, 519–27.

    PubMed  CAS  Google Scholar 

  81. Glantz, M.J., Hoffman, J.M., Coleman, R.E., Friedman, A.H., Hanson, M.W., Burger, P.C., et al. (1991) Identification of early recurrence of primary central nervous system tumors by [18F]fluorodeoxyglucose positron emission tomography. Ann Neurol 29, 347–55.

    PubMed  CAS  Google Scholar 

  82. Patronas, N.J., Di Chiro, G., Brooks, R.A., DeLaPaz, R.L., Kornblith, P.L., Smith, B.H., et al. (1982) Work in progress: [18F] fluorodeoxyglucose and positron emission tomography in the evaluation of radiation necrosis of the brain. Radiology 144, 885–9.

    PubMed  CAS  Google Scholar 

  83. Chao, S.T., Suh, J.H., Raja, S., Lee, S.Y., Barnett, G. (2001) The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer 96, 191–7.

    PubMed  CAS  Google Scholar 

  84. Mehrkens, J.H., Popperl, G., Rachinger, W., Herms, J., Seelos, K., Tatsch, K., et al. (2008) The positive predictive value of O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET in the diagnosis of a glioma recurrence after multimodal treatment. J Neurooncol 88, 27–35.

    PubMed  CAS  Google Scholar 

  85. Terakawa, Y., Tsuyuguchi, N., Iwai, Y., Yamanaka, K., Higashiyama, S., Takami, T., et al. (2008) Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radio­therapy. J Nucl Med 49, 694–9.

    PubMed  Google Scholar 

  86. Chung, J.K., Kim, Y.K., Kim, S.K., Lee, Y.J., Paek, S., Yeo, J.S., et al. (2002) Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET. Eur J Nucl Med Mol Imaging 29, 176–82.

    PubMed  CAS  Google Scholar 

  87. Bergstrom, M., Muhr, C., Lundberg, P.O., Bergstrom, K., Lundqvist, H., Langstrom, B. (1986) Amino acid metabolism in pituitary adenomas. Acta Radiol Suppl 369, 412–4.

    PubMed  CAS  Google Scholar 

  88. Bergstrom, M., Muhr, C., Lundberg, P.O., Langstrom, B. (1991) PET as a tool in the clinical evaluation of pituitary adenomas. J Nucl Med 32, 610–5.

    PubMed  CAS  Google Scholar 

  89. Tang, B.N., Levivier, M., Heureux, M., Wikler, D., Massager, N., Devriendt, D., et al. (2006) 11C-methionine PET for the diagnosis and management of recurrent pituitary adenomas. Eur J Nucl Med Mol Imaging 33, 169–78.

    PubMed  CAS  Google Scholar 

  90. Francavilla, T.L., Miletich, R.S., Di Chiro, G., Patronas, N.J., Rizzoli, H.V., Wright, D.C. (1989) Positron emission tomography in the detection of malignant degeneration of low-grade gliomas. Neurosurgery 24, 1–5.

    PubMed  CAS  Google Scholar 

  91. Popperl, G., Gotz, C., Rachinger, W., Gildehaus, F.J., Tonn, J.C., Tatsch, K. (2004) Value of O-(2-[18F]fluoroethyl)- L-tyrosine PET for the diagnosis of recurrent glioma. Eur J Nucl Med Mol Imaging 31, 1464–70.

    PubMed  Google Scholar 

  92. Chen, W., Silverman, D.H., Delaloye, S., Czernin, J., Kamdar, N., Pope, W., et al. (2006) 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med 47, 904–11.

    PubMed  CAS  Google Scholar 

  93. Hillner, B.E., Siegel, B.A., Shields, A.F., Liu, D., Gareen, I.F., Hanna, L., et al. (2008) The impact of positron emission tomography (PET) on expected management during cancer treatment: findings of the National Oncologic PET Registry. Cancer 115(2), 410–8.

    Google Scholar 

  94. Popperl, G., Gotz, C., Rachinger, W., Schnell, O., Gildehaus, F.J., Tonn, J.C., et al. (2006) Serial O-(2-[(18)F]fluoroethyl)-L: -tyrosine PET for monitoring the effects of intracavitary radioimmunotherapy in patients with malignant glioma. Eur J Nucl Med Mol Imaging 33, 792–800.

    PubMed  Google Scholar 

  95. Valk, P.E., Budinger, T.F., Levin, V.A., Silver, P., Gutin, P.H., Doyle, W.K. (1988) PET of malignant cerebral tumors after interstitial brachytherapy. Demonstration of metabolic activity and correlation with clinical outcome. J Neurosurg 69, 830–8.

    PubMed  CAS  Google Scholar 

  96. Popperl, G., Goldbrunner, R., Gildehaus, F.J., Kreth, F.W., Tanner, P., Holtmann­spotter, M., et al. (2005) O-(2-[18F]fluoroethyl)-L-tyrosine PET for monitoring the effects of convection-enhanced delivery of paclitaxel in patients with recurrent glioblastoma. Eur J Nucl Med Mol Imaging 32, 1018–25.

    PubMed  CAS  Google Scholar 

  97. Rozental, J.M., Levine, R.L., Nickles, R.J., Dobkin, J.A. (1989) Glucose uptake by gliomas after treatment. A positron emission tomographic study. Arch Neurol 46, 1302–7.

    PubMed  CAS  Google Scholar 

  98. De Witte, O., Hildebrand, J., Luxen, A., Goldman, S. (1994) Acute effect of carmustine on glucose metabolism in brain and glioblastoma. Cancer 74, 2836–42.

    PubMed  Google Scholar 

  99. Pirotte, B., Goldman, S., Massager, N., David, P., Wikler, D., Vandesteene, A., et al. (2004) Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J Nucl Med 45, 1293–8.

    PubMed  CAS  Google Scholar 

  100. Pirotte, B., Goldman, S., David, P., Wikler, D., Damhaut, P., Vandesteene, A., et al. (1997) Stereotactic brain biopsy guided by positron emission tomography (PET) with [F-18]fluorodeoxyglucose and [C-11]methionine Acta Neurochir Suppl 68, 133–8.

    PubMed  CAS  Google Scholar 

  101. Massager, N., David, P., Goldman, S., Pirotte, B., Wikler, D., Salmon, I., et al. (2000) Combined magnetic resonance imaging- and positron emission tomography-guided stereotactic biopsy in brainstem mass lesions: diagnostic yield in a series of 30 patients J Neurosurg 93, 951–7.

    PubMed  CAS  Google Scholar 

  102. Levivier, M., Massager, N., Wikler, D., Devriendt, D., Goldman, S. (2007) Integration of functional imaging in radiosurgery: The Example of PET Scan Prog Neurol Surg 20, 68–81.

    Google Scholar 

  103. Levivier, M., Massager, N., Wikler, D., Lorenzoni, J., Ruiz, S., Devriendt, D., et al. (2004) Use of stereotactic PET images in dosimetry planning of radiosurgery for brain tumors: clinical experience and proposed classification J Nucl Med 45, 1146–54.

    PubMed  Google Scholar 

  104. Levivier, M., Wikler, D., Jr., Massager, N., David, P., Devriendt, D., Lorenzoni, J., et al. (2002) The integration of metabolic imaging in stereotactic procedures including radiosurgery: a review J Neurosurg 97, 542–50.

    PubMed  Google Scholar 

  105. Torii, K., Tsuyuguchi, N., Kawabe, J., Sunada, I., Hara, M., Shiomi, S. (2005) Correlation of amino-acid uptake using methionine PET and histological classifications in various gliomas Ann Nucl Med 19(8), 677–83.

    PubMed  Google Scholar 

Download references

Acknowledgment

FRS-FNRS and National Lottery – Belgium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Goldman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Goldman, S., Pirotte, B.J.M. (2011). Brain Tumors. In: Juweid, M., Hoekstra, O. (eds) Positron Emission Tomography. Methods in Molecular Biology, vol 727. Humana Press. https://doi.org/10.1007/978-1-61779-062-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-062-1_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-061-4

  • Online ISBN: 978-1-61779-062-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics