Skip to main content

Laser Capture Microdissection of FFPE Tissue Sections Bridging the Gap Between Microscopy and Molecular Analysis

  • Protocol
  • First Online:
Formalin-Fixed Paraffin-Embedded Tissues

Part of the book series: Methods in Molecular Biology ((MIMB,volume 724))

Abstract

Laser capture microdissection (LCM) enables researchers to combine structure identification by ­microscopy with structure investigation by modern molecular techniques.

The main question in modern biomedical research is the understanding of cellular and molecular mechanisms. The methods to investigate pathological changes on a molecular, cellular, or tissue level become more and more exact, whereas at the same time the sample amounts available become smaller and smaller.

The challenge in microscopy is the identification of structures or molecules. Today, scientists are no longer satisfied with just observing tissues and cells. They demand the ability to get access to the identified structures to bring their observations to the subcellular and genetic level. Downstream to microscopy the full toolbox of molecular biology for DNA, RNA, and protein analysis has to be applied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Von Eggeling, F., and Ernst, G. (2007) Microdissected tissue: an underestimated source for biomarker discovery? Biomark Med 1, 217–219.

    Article  Google Scholar 

  2. Schütze, K., Niyaz, Y., Stich, M., and Buchstaller, A. (2007) Noncontact laser microdissection and catapulting for pure sample capture. Methods Cell Biol 82, 649–673.

    PubMed  Google Scholar 

  3. George, M.D., Wehkamp, J., Kays, R.J., Leutenegger, C.M, Sabir, S., Grishina, I., et al. (2008) In vivo gene expression profilin of human intestinal epithelial cells: analysis by laser microdissection of formalin fixed tissues. BMC Genomics 9, 209–213.

    Article  PubMed  Google Scholar 

  4. Burgemeister, R. (2005) New aspects of laser microdissection in research and routine. J Histochem Cytochem 53, 409–412.

    Article  PubMed  CAS  Google Scholar 

  5. Hoffmann, A.-C., Danenberg, K.D., Taubert, H., Danenberg, P.V., and Wuerl, P. (2009) A three-gene signature for outcome in soft tissue sarcoma. Clin Cancer Res 15, 5191–5198.

    Article  PubMed  Google Scholar 

  6. Vona, G., Sabile, A., Louha, M., Sitruk, V., Romana, S., Schütze, K., et al. (2000) Isolation by size of epithelial tumor cells : a new method for the immunomorphological and molecular characterization of circulating tumor cells. Am J Pathol 156, 57–63.

    Article  PubMed  CAS  Google Scholar 

  7. Kreft, A., Springer, E., Lipka, D.B., and Kirkpatrick, Ch.J. (2009) Wild-type JAK2 secondary acute erythroleukemia developing after JAK2-V617F-mutated primary myelofibrosis. Acta Haematol 122, 36–38.

    Article  PubMed  Google Scholar 

  8. Rödder, S., Scherer, A., Raulf, F., Bertier, C.C., Hertig, A., Couzi, L., et al. (2009) Renal allografts with IF/TA display distinct expression profiles of metzincins and related genes. Am J Transplant 9, 517–526.

    Article  PubMed  Google Scholar 

  9. Churchill, M.J., Wesseling, S.L., Cowley, D., Pardo, C.A., McArthur, J.C., Brew, B.J., et al. (2009) Extensive astrocyte infection is prominent in human immunodeficiency virus-associated dementia. Ann Neurol 66, 253–258.

    Article  PubMed  Google Scholar 

  10. Langer, S., Geigl, B., Gangnus, R., and Speicher, M.R. (2005) Sequential application of interphase-FISH and CGH to single cells. Lab Invest 85, 582–592.

    Article  PubMed  CAS  Google Scholar 

  11. Sotlar, K., Bache, A., Stellmacher, F., Bültmann, B., Valent, P., and Horny, H.-P. (2008) Systemic mastocytosis associated with chronic idiopathic myelofibrosis. J Mol Diagn 10, 58–66.

    Article  PubMed  CAS  Google Scholar 

  12. Langer, S., Geigl, J.B., Ehnle, S., Gangnus, R., and Speicher, M. (2005) Live cell catapulting and recultivation does not change the karyotype of HCT116 tumor cells. Cancer Genet Cytogenet 161, 174–177.

    Article  PubMed  CAS  Google Scholar 

  13. Thalhammer, S., Langer, S., Speicher, M.R., Heckl, W., and Geigl, J.B. (2004) Generation of chromosome painting probes from single chromosomes by laser microdissection and linker-adaptor PCR. Chromosome Res 12, 337–343.

    Article  PubMed  CAS  Google Scholar 

  14. Fiegler, H., Geigl, J.B., Langer, S., Rigler, D., Porter, K., Unger, K., et al. (2007) High resolution array-CGH analysis of single cells. Nucleic Acids Res 35, e15.

    Article  PubMed  Google Scholar 

  15. Terstegge, S., Rath, B.H., Laufenberg, I., Limbach, N., Buchstaller, A., Schütze, K., et al. (2009) Laser assisted selection and passaging of human pluripotent stem cell colonies. J Biotechnol 10, 224–230.

    Article  Google Scholar 

  16. Chaudhary, K.W., Barrezueta, N.X., Bauchmann, M.B., Milici, A.J., Beckius, G., Stedman, D.B., et al. (2006) Embryonic stem cells in predictive cardiotoxicity: laser capture microscopy enables assay development. Toxicol Sci 90, 149–158.

    Article  PubMed  CAS  Google Scholar 

  17. Duan, Y., Catana, A., Meng, Y., Yamamoto, N., He, S., Gupta, S., et al. (2007) Differentiation and enrichment of hepatocyte-like cells from human embryonic stem cells in vitro and in vivo. Stem Cells 25, 3058–3068.

    Article  PubMed  CAS  Google Scholar 

  18. Vandewoestyne, M., van Hoofstat, D., van Nieuwerburgh, F., and Deforce, D. (2009) Suspension fluorescence in situ hybridization (S-FISH) combined with automatic detection and laser microdissection for STR profiling of male cells in male/female mixtures. Int J Legal Med 123, 169–175.

    Article  PubMed  Google Scholar 

  19. Seitz, G., Warmann, S.W., Fuchs, J., Heitmann, H., Mahrt, J., Busse, A.-C., et al. (2008) Imaging of cell trafficking and metastases of paediatric rhabdomyosarcoma. Cell Prolif 41, 365–374.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renate Burgemeister .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Burgemeister, R. (2011). Laser Capture Microdissection of FFPE Tissue Sections Bridging the Gap Between Microscopy and Molecular Analysis. In: Al-Mulla, F. (eds) Formalin-Fixed Paraffin-Embedded Tissues. Methods in Molecular Biology, vol 724. Humana Press. https://doi.org/10.1007/978-1-61779-055-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-055-3_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-054-6

  • Online ISBN: 978-1-61779-055-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics