Skip to main content

Multiplexed Detection of Oligonucleotides with Biobarcoded Gold Nanoparticle Probes

  • Protocol
  • First Online:
Biomedical Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 726))

Abstract

Applications in a variety of fields rely on the high-throughput ultrasensitive and multiplexed detection of oligonucleotides. However, the conventional microarray-based techniques that employ fluorescent dyes are hampered by several limitations; they require target amplification, fluorophore labeling, and complicated instrumentation, while the fluorophore-labeled species themselves exhibit slow binding kinetics, photo-bleaching effects, and overlapping spectral profiles. Among the emerging nanomaterials that are being used to solve these problems, oligonucleotide–gold nanoparticle conjugates (Oligo-AuNPs) have recently been highlighted due to their unique chemical and physical properties. In this chapter, a detection scheme for oligonucleotides that utilize Oligo-AuNPs is evaluated with multiple oligonucleotide targets. This scheme takes advantage of the sharp melting transitions, intense optical properties, catalytic properties, enhanced binding properties, and the programmable assembly/disassembly of Oligo-AuNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vlahou, A. and Fountoulakis, A. (2005) Proteomic approaches in the search for disease biomarkers. J. Chromatogr. B 814, 11–19.

    Article  CAS  Google Scholar 

  2. Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., and Seraphin, B. (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 17, 1030–1032.

    Article  CAS  Google Scholar 

  3. Seubert, P., Vigopelfrey, C., Esch, F., Lee, M., Dovey, H., Davis, D., et al. (1992) Isolation and quantification of soluble Alzheimers beta-peptide from biological-fluids. Nature 359, 325–327.

    Article  CAS  Google Scholar 

  4. DeRisi, J. L., Iyer, V. R., and Brown, P. O. (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686.

    Article  CAS  Google Scholar 

  5. Rosi, N. L. and Mirkin, C. A. (2005) Nanostructures in biodiagnostics. Chem. Rev. 105, 1547–1562.

    Article  CAS  Google Scholar 

  6. Wang, H., Yang, R., Yang, L., and Tan, W. (2009) Nucleic acid conjugated nanomaterials for enhanced molecular recognition. ACS Nano 3, 2451–2460.

    Article  CAS  Google Scholar 

  7. Niemeyer, C. M. and Simon, U. (2005) DNA-based assembly of metal nanoparticles. Eur. J. Inorg. Chem. 18, 3641–3655.

    Article  Google Scholar 

  8. Mirkin, C. A., Letsinger, R. L., Mucic, R. C., and Storhoff, J. J. (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609.

    Article  CAS  Google Scholar 

  9. Taton, T. A., Mirkin, C. A., and Letsinger, R. L. (2000) Scanometric DNA array detection with nanoparticle probes. Science 289, 1757–1760.

    Article  CAS  Google Scholar 

  10. Anderson, E. S., Dong, M., Morten, M. N., Kasper, J., Subramani, R., Mamdouh, W., et al. (2009) Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73–76.

    Article  Google Scholar 

  11. Alivisatos, A. P., Johnsson, K. P., Peng, X., Wilson, T. E., Loweth, C. J., Bruchez, M. P., et al. (1996) Organization of “nanocrystal molecules” using DNA. Nature 382, 609–611.

    Article  CAS  Google Scholar 

  12. Grabar, K. C., Freeman, R. G., Hommer, M. B., and Natan, M. J. (1995) Preparation and characterization of Au colloid monolayers. Anal. Chem. 67, 735–743.

    Article  CAS  Google Scholar 

  13. Frens, G. (1973) Controlled nucleation for regulation of particle-size in monodisperse gold suspensions. Nat. Phys. Sci. 241, 20–22.

    CAS  Google Scholar 

  14. Daniel, M. C. and Astruc, D. (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346.

    Article  CAS  Google Scholar 

  15. Jin, R., Wu, G., Li, Z., Mirkin, C. A., and Schatz, G. C. (2003) What controls the melting properties of DNA-linked gold nanoparticle assemblies? J. Am. Chem. Soc. 125, 1643–1654.

    Article  CAS  Google Scholar 

  16. Storhoff, J. J., Lazarides, A. A., Mucic, R. C., Mirkin, C. A., Letsinger, R. L., and Schatz, G. C. (2000) What controls the optical properties of DNA-linked gold nanoparticle assemblies? J. Am. Chem. Soc. 122, 4640–4650.

    Article  CAS  Google Scholar 

  17. Lee, J.-S., Stoeva, S. I., and Mirkin, C. A. (2006) DNA-induced size-selective separation of mixtures of gold nanoaparticles. J. Am. Chem. Soc. 128, 8899–8903.

    Article  CAS  Google Scholar 

  18. Lytton-Jean, A. K. R. and Mirkin, C. A. (2005) A thermodynamic investigation into the binding properties of DNA functionalized gold nanoparticle probes and molecular fluorophore probes. J. Am. Chem. Soc. 127, 12754–12755.

    Article  CAS  Google Scholar 

  19. Rosi, N. L., Giljohann, D. A., Thaxton, C. S., Lytton-Jean, A. K. R., Han, M. S., and Mirkin, C. A. (2006) Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312, 1027–1030.

    Article  CAS  Google Scholar 

  20. Letsinger, R. L., Elghanian, R., Viswanadham, G., and Mirkin, C. A. (2000) Use of a steroid cyclic disulfide anchor in constructing gold nanoparticle-oligonucleotide conjugates. Bioconjug. Chem. 11, 289–291.

    Article  CAS  Google Scholar 

  21. Li, Z., Jin, R. C., Mirkin, C. A., and Letsinger, R. L. (2002) Multiple thiol-anchor capped DNA-gold nanoparticle conjugates. Nucleic Acids Res. 30, 1558–1562.

    Article  CAS  Google Scholar 

  22. Hurst, S. J., Lytton-Jean, A. K. R., and Mirkin, C. A. (2006) Maximizing DNA loading on a range of gold nanoparticle sizes. Anal. Chem. 78, 8313–8318.

    Article  CAS  Google Scholar 

  23. Stoeva, S. I., Lee, J.-S., Thaxton, C. S., and Mirkin, C. A. (2006) Multiplexed DNA detection with bio-barcoded nanoparticle probes. Angew. Chem. Int. Ed. 45, 3303–3306.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Seung Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lee, JS. (2011). Multiplexed Detection of Oligonucleotides with Biobarcoded Gold Nanoparticle Probes. In: Hurst, S. (eds) Biomedical Nanotechnology. Methods in Molecular Biology, vol 726. Humana Press. https://doi.org/10.1007/978-1-61779-052-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-052-2_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-051-5

  • Online ISBN: 978-1-61779-052-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics