Skip to main content

Computational Simulations of the Interaction of Lipid Membranes with DNA-Functionalized Gold Nanoparticles

  • Protocol
  • First Online:
Biomedical Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 726))

Abstract

We develop a shape-based coarse-grained (SBCG) model for DNA-functionalized gold nanoparticles (DNA-Au NPs) and use this to study the interaction of this potential antisense therapeutic with a lipid bilayer model of a cell membrane that is also represented using a coarse-grained model. Molecular dynamics simulations of the SBCG model of the DNA-Au NP show structural properties which coincide with our previous atomistic models of this system. The lipid membrane is composed of 30% negatively charged lipid (1,2-dioleoyl-sn-glycero-3-phosphoserine, DOPS) and 70% neutral lipid (1,2-dioleoyl-sn-glycero-3-phosphocholine, DOPC) in 0.15 M sodium chloride solution. Molecular dynamics (MD) simulations of the DNA-Au NP near to the lipid bilayer show that there is a higher density of DOPS than DOPC near to the DNA-Au NP since sodium counterions are able to have strong electrostatic interactions with DOPS and the DNA-Au NP at the same time. Using a steered MD simulation, we show that this counterion-mediated electrostatic interaction between DNA-Au NP and DOPS stabilizes the DNA-Au NP in direct contact with the lipid. This provides a model for interaction of DNA-Au NPs with cell membranes that does not require protein mediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alemdaroglu, F. E., Alemdaroglu, N. C., Langguth, P., and Hermann, A. (2008) DNA block copolymer micelles – A combinatorial tool for cancer nanotechnology. Adv. Mater. 20, 899–902.

    Article  CAS  Google Scholar 

  2. Ghosh, P., Han, G., De, M., Kim, C. K., and Rotello, V. M. (2008) Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev. 60, 1307–1315.

    Article  CAS  Google Scholar 

  3. Nel, A. E., Madler, L., Velegol, D., Xia, T., Hoek, E. M. V., Somasundaran, P., et al. (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8, 543–557.

    Article  CAS  Google Scholar 

  4. Thurn, K. T., Brown, E. M. B., Wu, A., Vogt, S., Lai, B., Maser, J., et al. (2007) Nanoparticles for applications in cellular imaging. Nanoscale Res. Lett. 2, 430–441.

    Article  CAS  Google Scholar 

  5. Chithrani, B. D. and Chan, W. C. W. (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 7, 1542–1550.

    Article  CAS  Google Scholar 

  6. Chithrani, B. D., Ghazani, A. A., and Chan, W. C. W. (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6, 662–668.

    Article  CAS  Google Scholar 

  7. Giljohann, D. A., Seferos, D. S., Patel, P. C., Millstone, J. E., Rosi, N. L., and Mirkin, C. A. (2007) Oligonucleotide loading determines cellular update of DNA-modified gold nanoparticles. Nano Lett. 7, 3818–3821.

    Article  CAS  Google Scholar 

  8. Giljohann, D. A., Seferos, D. W., Prigodich, A. E., Patel, P. C., and Mirkin, C. A. (2009) Gene regulation with polyvalent siRNA-nanoparticle conjugates. J. Am. Chem. Soc. 131, 2072–2073.

    Article  CAS  Google Scholar 

  9. Rosi, N. L., Giljohann, D. A., Thaxton, C. S., Lytton-Jean, A. K. R., Han, M. S., and Mirkin, C. A. (2006) Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312, 1027–1030.

    Article  CAS  Google Scholar 

  10. Patel, P. C., Giljohann, D. A., Seferos, D. S., and Mirkin, C. A. (2008) Peptide antisense nanoparticles. Proc. Natl. Acad. Sci. U.S.A. 105, 17222–17226.

    Article  CAS  Google Scholar 

  11. Patel, P.C. at Northwestern University (2009) Personal communication.

    Google Scholar 

  12. Lee, O.-S. and Schatz, G. C. (2009) Molecular dynamics simulation of DNA-functionalized gold nanoparticles. J. Phys. Chem. C 113, 2316–2321.

    Article  CAS  Google Scholar 

  13. Lee, O.-S. and Schatz, G. C. (2009) Interaction between DNAs on a gold surface. J. Phys. Chem. C 113, 15941–15947.

    Article  CAS  Google Scholar 

  14. Lee, O.-S. and Schatz, G. C. (2009) Molecular dynamics simulation of ds-DNA on a gold surface at low surface coverage. MRS Proc. 1177, 209–233.

    Google Scholar 

  15. Arkhipov, A., Yin, Y., and Schulten, K. (2008) Four-scale description of membrane sculpting by BAR domains. Biophys. J. 95, 2806–2821.

    Article  CAS  Google Scholar 

  16. Allen, M. P. and Tildesley, D. J. (1987) Computer simulation of liquids. Oxford University Press, Inc., New York.

    Google Scholar 

  17. McQuarrie, D. A. (1976) Statistical mechanics. Harper Collins Publishers, New York.

    Google Scholar 

  18. Feller, S. E., Zhang, Y. H., Pastor, R. W., and Brooks, B. R. (1995) Constant-pressure molecular-dynamics simulation – The Langevin piston method. J. Chem. Phys. 103, 4613–4621.

    Article  CAS  Google Scholar 

  19. Martyna, G. J., Tobias, D. J., and Klein, M. L. (1994) Constant-pressure molecular-dynamics algorithms. J. Chem. Phys. 101, 4177–4189.

    Article  CAS  Google Scholar 

  20. Kale, L., Skeel, R., Bhandarkar, M., Brunner, R., Gursoy, A., Krawetz, N., et al. (1999) NAMD2: Greater scalability for parallel molecular dynamics. J. Comput. Phys. 151, 283–312.

    Article  CAS  Google Scholar 

  21. Becker, W. M., Reece, J. B., and Poenie, M. F. (1996) The world of the cell. The Benjamin/Cummings Publishing Company, Inc., Menlo Park.

    Google Scholar 

Download references

Acknowledgments

This research was supported by National Science Foundation (grant CHE-0843832), and by the Northwestern Center for Cancer Nanobiotechnology Excellence (1 U54 CA119341-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George C. Schatz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lee, OS., Schatz, G.C. (2011). Computational Simulations of the Interaction of Lipid Membranes with DNA-Functionalized Gold Nanoparticles. In: Hurst, S. (eds) Biomedical Nanotechnology. Methods in Molecular Biology, vol 726. Humana Press. https://doi.org/10.1007/978-1-61779-052-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-052-2_18

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-051-5

  • Online ISBN: 978-1-61779-052-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics