Skip to main content

Applications of Carbon Nanotubes in Biomedical Studies

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 726))

Abstract

Carbon nanotubes (CNTs) are novel, one-dimensional nanomaterials with many unique physical and chemical properties that have been increasingly explored for biological and biomedical applications. In this chapter, we briefly summarize the intrinsic properties of single-walled carbon nanotubes (SWNTs), a special class of CNTs, and their corresponding applications in these fields. SWNTs have been utilized for the ultrasensitive detection of biological species, providing a label-free approach. SWNT-Raman tags have achieved detection sensitivity down to 1 fmol/L. SWNT-based drug delivery systems have shown promising potential based on preliminary in vitro and in vivo studies. Also, the remarkable optical properties of SWNTs have made them promising candidates as contrast agents for imaging in cells and animals. Moreover, due to their excellent mechanical strength, SWNTs have been used to improve the mechanical properties of solid polymeric nanocomposites and porous scaffolds. Sample preparation procedures for the use of SWNTs as fluorescent imaging labels and in biological composites will be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Liu, Z., Tabakman, S., Welsher, K., and Dai, H. (2009) Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res. 2, 85–120.

    Article  CAS  Google Scholar 

  2. Cao, Q. and Rogers, J. A. (2008) Random networks and aligned arrays of single-walled carbon nanotubes for electronic device applications. Nano Res. 1, 259– 272.

    Article  CAS  Google Scholar 

  3. Fan, S. S., Chapline, M. G., Franklin, N. R., Tombler, T. W., Cassell, A. M., and Dai, H. J. (1999) Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283, 512–514.

    Article  CAS  Google Scholar 

  4. Shi, X., Hudson, J., Spicer, P., Tour, J., Krishnamoorti, R., and Mikos, A. (2005) Rheological behaviour and mechanical characterization of injectable poly (propylene fumarate)/single-walled carbon nanotube composites for bone tissue engineering. Nanotechnology 16, 531.

    Article  CAS  Google Scholar 

  5. Sitharaman, B., Kissell, K. R., Hartman, K. B., Tran, L. A., Baikalov, A., Rusakova, I., et al. (2005) Superparamagnetic gadonanotubes are high-performance MRI contrast agents. Chem. Commun. 31, 3915.

    Article  Google Scholar 

  6. Chen, R. J., Bangsaruntip, S., Drouvalakis, K. A., Kam, N. W. S., Shim, M., Li, Y. M., et al. (2003) Non-covalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci.USA 100, 4984–4989.

    Article  CAS  Google Scholar 

  7. Kam, N. W. S., Jessop, T. C., Wender, P. A., and Dai, H. (2004) Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J. Am. Chem. Soc. 126, 6850–6851.

    Article  CAS  Google Scholar 

  8. Bianco, A., Kostarelos, K., Partidos, C. D., and Prato, M. (2005) Biomedical applications of functionalised carbon nanotubes. Chem. Commun. 571–577.

    Google Scholar 

  9. Cherukuri, P., Bachilo, S. M., Litovsky, S. H., and Weisman, R. B. (2004) Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc. 126, 15638–15639.

    Article  CAS  Google Scholar 

  10. Tans, S. J., Devoret, M. H., Dai, H., Thess, A., Smalley, R. E., Geerligs, L. J., et al. (1997) Individual single-wall carbon nanotubes as quantum wires. Nature 386, 474–477.

    Article  CAS  Google Scholar 

  11. O’Connell, M. J., Bachilo, S. M., Huffman, C. B., Moore, V. C., Strano, M. S., Haroz, E. H., et al. (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596.

    Article  Google Scholar 

  12. Kam, N. W. S., O’Connell, M., Wisdom, J. A., and Dai, H. (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. USA 102, 11600–11605.

    Article  CAS  Google Scholar 

  13. Chakravarty, P., Marches, R., Zimmerman, N. S., Swafford, A. D. E., Bajaj, P., Musselman, I. H., et al. (2008) Thermal ablation of tumor cells with anti body-functionalized single-walled carbon nanotubes. Proc. Natl Acad. Sci. USA 105, 8697–8702.

    Article  CAS  Google Scholar 

  14. De la Zerda, A., Zavaleta, C., Keren, S., Vaithilingam, S., Bodapati, S., Liu, Z., et al. (2008) Photoacoustic molecular imaging in living mice utilizing targeted carbon nanotubes. Nat. Nanotechnol. 3, 557–562.

    Article  Google Scholar 

  15. Rao, A. M., Richter, E., Bandow, S., Chase, B., Eklund, P. C., Williams, K. A., et al. (1997) Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 275, 187–191.

    Article  CAS  Google Scholar 

  16. Heller, D. A., Baik, S., Eurell, T. E., and Strano, M. S. (2005) Single walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors. Adv. Mater. 17, 2793–2799.

    Article  CAS  Google Scholar 

  17. Tang, X. W., Bansaruntip, S., Nakayama, N., Yenilmez, E., Chang, Y. L., and Wang, Q. (2006) Carbon nanotube DNA sensor and sensing mechanism. Nano Lett. 6, 1632–1636.

    Article  CAS  Google Scholar 

  18. Chen, Z., Tabakman, S. M., Goodwin, A. P., Kattah, M. G., Daranciang, D., Wang, X., et al. (2008) Protein microarrays with carbon nanotubes as multi-color Raman labels. Nat. Biotechnol. 26, 1285–1292.

    Article  CAS  Google Scholar 

  19. Welsher, K., Liu, Z., Sherlock, S., Robinson, J., Chen, Z., Daranciang, D., et al. (2009) A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 4, 773–780.

    Article  CAS  Google Scholar 

  20. Singh, R., Pantarotto, D., McCarthy, D., Chaloin, O., Hoebeke, J., Partidos, C. D., et al. (2005) Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. J. Am. Chem. Soc. 127, 4388–4396.

    Article  CAS  Google Scholar 

  21. Kam, N. W. S. and Dai, H. (2005) Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J. Am. Chem. Soc. 127, 6021–6026.

    Article  CAS  Google Scholar 

  22. Pantarotto, D., Briand, J. P., Prato, M., and Bianco, A. (2004) Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. 16–17.

    Google Scholar 

  23. Liu, Z., Chen, K., Davis, C., Sherlock, S., Cao, Q., Chen, X., et al. (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 68, 6652–6660.

    Article  CAS  Google Scholar 

  24. Chen, R. J., Zhang, Y. G., Wang, D. W., and Dai, H. (2001) Non-covalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 123, 3838–3839.

    Article  CAS  Google Scholar 

  25. Kim, S. N., Rusling, J. F., and Papadimitrakopoulos, F. (2007) Carbon nanotubes for electronic and electrochemical detection of biomolecules. Adv. Mater. 19, 3214–3228.

    Article  CAS  Google Scholar 

  26. Wang, J. (2005) Carbon-nanotube-based electrochemical biosensors: a review. Electroanalysis 17, 7–14.

    Article  CAS  Google Scholar 

  27. Barone, P. W., Parker, R. S., and Strano, M. S. (2005) In vivo fluorescence detection of glucose using a single-walled carbon nanotube optical sensor: design, fluorophore properties, advantages, and disadvantages. Anal. Chem. 77, 7556–7562.

    Article  CAS  Google Scholar 

  28. Barone, P. W., Baik, S., Heller, D. A., and Strano, M. S. (2004) Near-infrared optical sensors based on single-walled carbon nanotubes. Nat. Mater . 4, 86–92.

    Article  Google Scholar 

  29. Heller, D., Jeng, E., Yeung, T., Martinez, B., Moll, A., Gastala, J., et al. (2006) Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science 311, 508–511.

    Article  CAS  Google Scholar 

  30. Jin, H., Heller, D., Kalbacova, M., Kim, J., Zhang, J., Boghossian, A., et al. (2010) Detection of single-molecule H2O2 signaling from epidermal growth factor receptor using fluorescent single-walled carbon nanotubes. Nat. Nanotech. 5, 302–309.

    Google Scholar 

  31. Nie, S. and Emory, S. R. (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106.

    Article  CAS  Google Scholar 

  32. Jeanmaire, D. L. and Van Duyne, R. P. (1977) Surface Raman spectroelectrochemistry part 1. Heterocyclic, aromatic, and aliphatic amines adsorbed on anodized silver electrode. J. Elec-troanal. Chem. 84, 1–20.

    Article  CAS  Google Scholar 

  33. Espina, V., Woodhouse, E. C., Wulfkuhle, J., Asmussen, H. D., Petricoin, E. F., and Liotta, L. A. (2004) Protein microarray detection strategies: focus on direct detection technologies. J. Immunol. Methods 290, 121–133.

    Article  CAS  Google Scholar 

  34. Feazell, R. P., Nakayama-Ratchford, N., Dai, H., and Lippard, S. J. (2007) Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design. J. Am. Chem. Soc. 129, 8438–8349.

    Article  CAS  Google Scholar 

  35. Liu, Z., Sun, X., Nakayama, N., and Dai, H. (2007) Supramolecular chemistry on water-­soluble carbon nanotubes for drug loading and delivery. ACS Nano 1, 50–56.

    Article  Google Scholar 

  36. Aubin, J. E. (1979) Autofluorescence of viable cultured mammalian cells. J. Histochem. Cytochem. 27, 36–43.

    Article  CAS  Google Scholar 

  37. Liu, Z., Winters, M., Holodniy, M., and Dai, H. (2007) siRNA delivery into human T cells and primary cells with carbon nanotube transporters. Angew. Chem. Int. Ed. 46, 2023–2027.

    Article  CAS  Google Scholar 

  38. Schipper, M. L., Nakayama-Ratchford, N., Davis, C. R., Kam, N. W. S., Chu, P., Liu, Z., et al. (2008) A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat. Nanotechnol. 3, 216–221.

    Article  CAS  Google Scholar 

  39. Liu, Z., Davis, C., Cai, W., He, L., Chen, X., and Dai, H. (2008) Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl Acad. Sci. USA 105, 1410–1415.

    Article  CAS  Google Scholar 

  40. Xu, M. H. and Wang, L. H. V. (2006) Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77, 041101.

    Article  Google Scholar 

  41. Shi, X., Sitharaman, B., Pham, Q., Liang, F., Wu, K., Billups, W. E., et al. (2007) Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering. Biomaterials 28, 4078–4090.

    Article  CAS  Google Scholar 

  42. Shi, X., Sitharaman, B., Pham, Q., Spicer, P., Hudson, J., Wilson, L., et al. (2008) In vitro cytotoxicity of single-walled carbon nanotube/biodegradable polymer nanocomposites. J. Biomed. Mater. Res. A 86, 813–823.

    Google Scholar 

  43. Sitharaman, B., Shi, X., Tran, L., Spicer, P., Rusakova, I., Wilson, L., et al. (2007) Injectable in situ cross-linkable nanocomposites of biodegradable polymers and carbon nanostructures for bone tissue engineering. J. Biomater. Sci. Polymer Ed. 18, 655–671.

    Article  CAS  Google Scholar 

  44. Sitharaman, B., Shi, X., Walboomers, X. F., Liao, H., Cuijpers, V., Wilson, L. J., et al. (2008) In vivo biocompatibility of ultra-short single-walled carbon nanotube/biodegradable polymer nanocomposites for bone tissue engineering. Bone 43, 362–370.

    Article  CAS  Google Scholar 

  45. Cui, D. X., Tian, F. R., Ozkan, C. S., Wang, M., and Gao, H. J. (2005) Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol. Lett. 155, 73–85.

    Article  CAS  Google Scholar 

  46. Lam, C. W., James, J. T., McCluskey, R., and Hunter, R. L. (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Lett. 77, 126–134.

    CAS  Google Scholar 

  47. Warheit, D. B., Laurence, B. R., Reed, K. L., Roach, D. H., Reynolds, G. A. M., and Webb, T. R. (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol. Lett. 77, 117–125.

    CAS  Google Scholar 

  48. Poland, C. A., Duffin, R., Kinloch, I., Maynard, A., Wallace, W. A. H., Seaton, A., et al. (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 3, 423–428.

    Article  CAS  Google Scholar 

  49. Wu, W., Wieckowski, S., Pastorin, G., Benincasa, M., Klumpp, C., Briand, J. P., et al. (2005) Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew. Chem. Int. Ed. 44, 6358–6362.

    Article  CAS  Google Scholar 

  50. Dumortier, H., Lacotte, S., Pastorin, G., Marega, R., Wu, W., Bonifazi, D., et al. (2006) Functionalized carbon nanotubes are noncytotoxic and preserve the functionality of primary immune cells. Nano Lett. 6, 1522–1528.

    Article  CAS  Google Scholar 

  51. Chen, X., Lee, G. S., Zettl, A., and Bertozzi, C. R. (2004) Biomimetic engineering of carbon nanotubes by using cell surface mucin mimics. Angew. Chem. Int. Ed. 43, 6111–6116.

    Article  CAS  Google Scholar 

  52. Chen, X., Tam, U. C., Czlapinski, J. L., Lee, G. S., Rabuka, D., Zettl, A., et al. (2006) Interfacing carbon nanotubes with living cells. J. Am. Chem. Soc. 128, 6292–6293.

    Article  CAS  Google Scholar 

  53. Chin, S. F., Baughman, R. H., Dalton, A. B., Dieckmann, G. R., Draper, R. K., Mikoryak, C., et al. (2007) Amphiphilic helical peptide enhances the uptake of single-walled carbon nanotubes by living cells. Exp. Biol. Med. 232, 1236–1244.

    Article  CAS  Google Scholar 

  54. Yehia, H. N., Draper, R. K., Mikoryak, C., Walker, E. K., Bajaj, P., Musselman, I. H., et al. (2007) Single-walled carbon nanotube interactions with HeLa cells. J. Nanobiotech. 5, 8.

    Article  Google Scholar 

  55. Journet, C., Maser, W. K., Bernier, P., Loiseau, A., Delachapelle, M. L., Lefrant, S., et al. (1997) Large-scale production of single walled carbon nanotubes by the electric-arc technique. Nature 388, 756–758.

    Article  CAS  Google Scholar 

  56. Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., et al. (1996) Crystalline ropes of metallic carbon nanotubes. Science 273, 483–487.

    Article  CAS  Google Scholar 

  57. Nikolaev, P., Bronikowshi, M. J., Bradley, R. K., Rohmund, F., Colbert, D. T., Smith, K. A., et al. (1999) Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 313, 91–97.

    Article  CAS  Google Scholar 

  58. Resasco, D. E., Alvarez, W. E., Pompeo, F., Balzano, L., Herrera, J. E., Bitiyanan, B., et al. (2002) A scalable process for production of single-walled carbon nanotubes (SWNT) by catalytic disproportionation of CO on a solid catalyst. J. Nanopart. Res. 4, 131–136.

    Article  CAS  Google Scholar 

  59. Guldi, D. M., Taieb, H., Rahman, G. M. A., Tagmatarchis, N., and Prato, M. (2005) Novel photoactive single-walled carbon nanotube-porphyrin polymer wraps: efficient and longlived intracomplex charge separation. Adv. Mater. 17, 871–875.

    Article  CAS  Google Scholar 

  60. Chen, J., Liu, H. Y., Weimer, W. A., Halls, M. D., Waldeck, D. H., and Walker, G. C. (2002) Non-covalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers. J. Am. Chem. Soc. 124, 9034–9035.

    Article  CAS  Google Scholar 

  61. Nakayama-Ratchford, N., Bangsaruntip, S., Sun, X. M., Welsher, K., and Dai, H. (2007) Non-covalent functionalization of carbon nanotubes by fluorescein-polyethylene glycol: supramolecular conjugates with pH-dependent absorbance and fluorescence. J. Am. Chem. Soc. 129, 2448–2449.

    Article  CAS  Google Scholar 

  62. Cherukuri, P., Gannon, C. J., Leeuw, T. K., Schmidt, H. K., Smalley, R. E., Curley, S. A., et al. (2006) Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc. Natl Acad. Sci. USA 103, 18882–18886.

    Article  CAS  Google Scholar 

  63. Richard, C., Balavoine, F., Schultz, P., Ebbesen, T. W., and Mioskowski, C. (2003) Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science 300, 775–778.

    Article  CAS  Google Scholar 

  64. Wang, H., Zhou, W., Ho, D. L., Winey, K. I., Fischer, J. E., Glinka, C. J., et al. (2004) Dispersing single-walled carbon nanotubes with surfactants: a small angle neutron scattering study. Nano Lett. 4, 1789–1793.

    Article  CAS  Google Scholar 

  65. Liu, Z., Cai, W. B., He, L. N., Nakayama, N., Chen, K., Sun, X. M., et al. (2007) In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2, 4–52.

    Google Scholar 

  66. Niyogi, S., Hamon, M. A., Hu, H., Zhao, B., Bhowmik, P., Sen, R., et al. (2002) Chemistry of single-walled carbon nanotubes. Acc. Chem. Res. 35, 1105–1113.

    Article  CAS  Google Scholar 

  67. Zeng, L., Alemany, L. B., Edwards, C. L., and Barron, A. R. (2008) Demonstration of covalent sidewall functionalization of single wall carbon nanotubes by NMR spectroscopy: side chain length dependence on the observation of the sidewall sp3 carbons. Nano. Res. 1, 72–88.

    Article  CAS  Google Scholar 

  68. Georgakilas, V., Kordatos, K., Prato, M., Guldi, D. M., Holzinger, M., and Hirsch, A. (2002) Organic functionalization of carbon nanotubes. J. Am. Chem. Soc. 124, 760–761.

    Article  CAS  Google Scholar 

  69. Tagmatarchis, N. and Prato, M. (2004) Functionalization of carbon nanotubes via 1,3-dipolar cycloadditions. J. Mater. Chem. 14, 437–439.

    Article  CAS  Google Scholar 

  70. Pastorin, G., Wu, W., Wieckowski, S., Briand, J. P., Kostarelos, K., Prato, M., et al. (2006) Double functionalisation of carbon nanotubes for multimodal drug delivery. Chem. Commun. 1182–1184.

    Google Scholar 

  71. Birch, A. J. and Smith, H. (1958) Reduction by metal–amine solutions: applications in synthesis and determination of structure. Q. Rev. Chem. Soc. 12, 17–33.

    Article  CAS  Google Scholar 

  72. Liang, F., Sadana, A. K., Peera, A., Chattopadhyay, J., Gu, Z., Hauge, R. H., et al. (2004) A convenient route to functionalized carbon nanotubes. Nano Lett. 4, 1257–1260.

    Article  CAS  Google Scholar 

  73. Liang, F., Alemany, L. B., Beach, J. M., and Billups, W. E. (2005) Structure analyses of dodecylated single-walled carbon nanotubes. J. Am. Chem. Soc. 127, 13941–13948.

    Article  CAS  Google Scholar 

  74. Deng, S. L., Brozena, A. H., Zhang, Y., Piao, Y.-M., Wang, Y. H. (2011) “Diameter-Dependent, Progressive Alkylcarboxylation of Single-Walled Carbon Nanotubes.” Chem. Comm. 47, 758–760.

    Google Scholar 

  75. Brozena, A., Moskowitz, J., Shao, B., Deng, S., Liao, H., Gaskell, K., et al. (2010) Outer wall selectively oxidized, water-soluble double-walled carbon nanotubes. J. Am. Chem. Soc. 132, 3932–3938.

    Article  CAS  Google Scholar 

  76. Shung, A., Timmer, M., Jo, S., Engel, P., and Mikos, A. (2002) Kinetics of poly (propylene fumarate) synthesis by step polymerization of diethyl fumarate and propylene glycol using zinc chloride as a catalyst. J. Biomater. Sci. Polym. Ed. 13, 95–108.

    Article  CAS  Google Scholar 

  77. Chiang, I., Brinson, B., Huang, A., Willis, P., Bronikowski, M., Margrave, J., et al. (2001) Purification and characterization of single-wall carbon nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPco process). J. Phys. Chem. B 105, 8297–8301.

    Article  CAS  Google Scholar 

  78. Fisher, J. P., Holland, T., Dean, D., Engel, P., and Mikos, A. (2001) Synthesis and properties of photocross-linked poly (propylene fumarate) scaffolds. J. Biomater. Sci. Poly. Ed. 12, 673–687.

    Article  CAS  Google Scholar 

  79. Moore, M., Jabbari, E., Ritman, E., Lu, L., Currier, B., Windebank, A., et al. (2004) Quantitative analysis of interconnectivity of porous biodegradable scaffolds with micro-computed tomography. J. Biomed. Mater. Res. 71, 258–267.

    Article  Google Scholar 

  80. Wang, Y., Shan, H., Hauge, R., Pasquali, M., and Smalley, R. E. (2007) A highly selective, one-pot, green chemistry for carbon nanotube purification. J. Phys. Chem. B 111, 1249–1252.

    Article  CAS  Google Scholar 

  81. Timmer, M., Carter, C., Ambrose, C., and Mikos, A. (2003) Fabrication of poly (propylene fumarate)-based orthopaedic implants by photo-crosslinking through transparent silicone molds. Biomaterials 24, 4707–4714.

    Article  CAS  Google Scholar 

  82. Lowell, S., Shields, J., Thomas, M., and Thommes, M. (2004) Characterization of porous solids and powders: surface area, pore size, and density. Springer, The Netherlands.

    Google Scholar 

  83. Shi, X., Hudson, J., Spicer, P., Tour, J., Krishnamoorti, R., and Mikos, A. (2006) Injectable nanocomposites of single-walled carbon nanotubes and biodegradable polymers for bone tissue engineering. Biomacro­molecules 7, 2237–2242.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jarrett Leeds for helping in the preparation of soluble SWNT. This work was supported by Office of the Vice President of Research at Stony Brook University (SB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Liao, H., Paratala, B., Sitharaman, B., Wang, Y. (2011). Applications of Carbon Nanotubes in Biomedical Studies. In: Hurst, S. (eds) Biomedical Nanotechnology. Methods in Molecular Biology, vol 726. Humana Press. https://doi.org/10.1007/978-1-61779-052-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-052-2_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-051-5

  • Online ISBN: 978-1-61779-052-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics