Skip to main content

Analysis of Serum Protein Glycosylation with Antibody–Lectin Microarray for High-Throughput Biomarker Screening

  • Protocol
  • First Online:
Protein Microarray for Disease Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 723))

Abstract

The complexity of carbohydrate structures and their derivatives makes the study of the glycome a challenging subset of proteomic research. The microarray platform has become an essential tool to characterize glycan structure and to study glycosylation-related biological interactions, by using probes as a means to interrogate the spotted or captured glycosylated molecules on the arrays. The high-throughput and reproducible nature of microarray platforms have been highlighted by their extensive applications in the field of biomarker validation, where a large number of samples must be analyzed multiple times. This chapter presents an antibody–lectin microarray approach, which allows the efficient, multiplexed study of the glycosylation of multiple individual proteins from complex mixtures with both fluorescence labeling detection and label-free detection based on mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rudd PM, Elliott T, Cresswell P, Wilson IA, Dwek RA (2001) Glycosylation and the immune system. Science 291:2370–2376

    Article  PubMed  CAS  Google Scholar 

  2. Kobata A, Amano J (2005) Altered glycosylation of proteins produced by malignant cells, and application for the diagnosis and immunotherapy of tumours. Immunol Cell Biol 83:429–439

    Article  PubMed  CAS  Google Scholar 

  3. Gessner P, Riedl S, Quentmaier A et al (1993) (1993) Enhanced activity of cmp-newac-gal-beta-1–4glcnac-alpha-2, 6-sialyltransferase in metastasizing human colorectal tumor-tissue and serum of tumor patients. Cancer Lett 75:143–149

    Article  PubMed  CAS  Google Scholar 

  4. Gorelik E, Galili U, Raz A (2001) On the role of cell surface carbohydrates and their binding proteins (lectins) in tumor metastasis. Cancer Metastasis Rev 20:245–277

    Article  PubMed  CAS  Google Scholar 

  5. Zhao J, Simeone DM, Heidt D, Anderson MA, Lubman DM (2006) Comparative serum glycoproteomics using lectin selected sialic acid glycoproteins with mass spectrometric analysis: application to pancreatic cancer serum. J Proteome Res 5:1792–1802

    Article  PubMed  CAS  Google Scholar 

  6. Ressom HW, Varghese RS, Goldman L et al (2008) Analysis of MALDI-TOF mass spectrometry data for discovery of peptide and glycan biomarkers of hepatocellular carcinoma. J Proteome Res 7:603–610

    Article  PubMed  CAS  Google Scholar 

  7. An HJ, Peavy TR, Hedrick JL et al (2003) (2003) Determination of N-glycosylation sites and site heterogeneity in glycoproteins. Anal Chem 75:5628–5637

    Article  PubMed  CAS  Google Scholar 

  8. Block TM, Comunale MA, Lowman M et al (2005) Use of targeted glycoproteomics to identify serum glycoproteins that correlate with liver cancer in woodchucks and humans. Proc Natl Acad Sci U S A 102:779–784

    Article  PubMed  CAS  Google Scholar 

  9. Patwa TH, Zhao J, Anderson MA, Simone DM et al (2006) Screening of glycosylation patterns in serum using natural glycoprotein microarrays and multi-lectin fluorescence detection. Anal Chem 78:6411–6421

    Article  PubMed  CAS  Google Scholar 

  10. Chen SM, LaRoche T, Hamelinck D et al (2007) Multiplexed analysis of glycan variation on native proteins captured by antibody microarrays. Nat Methods 5:437–444

    Google Scholar 

  11. Zhao J, Patwa TH, Qiu WL et al (2007) Glycoprotein microarray with multi-lectin detection: unique lectin binding patterns as tools for classifying normal, chronic pancreatitis, and pancreatic cancer sera. J Proteome Res 5:1864–1874

    Article  Google Scholar 

  12. Wu YM, Nowack DD, Omenn GS et al (2008) Mucin glycosylation is altered by pro-inflammatory signaling in pancreatic-cancer cells. Pancreas 37:502

    Google Scholar 

  13. Yue TT, Goldstein IJ, Hollingsworth MA et al (2009) The prevalence and nature of glycan alterations on specific proteins in pancreatic cancer patients revealed using antibody-lectin sandwich arrays. Mol Cell Proteomics 7:1697–1707

    Google Scholar 

  14. Evans-Nguyen KM, Tao SC, Zhu H et al (2008) Protein arrays on patterned porous gold substrates interrogated with mass spectrometry: detection of peptides in plasma. Anal Chem 5:1448–1458

    Article  Google Scholar 

  15. Li C, Simeone DM, Brenner DE et al (2009) Pancreatic cancer serum detection using a lectin/glyco-antibody array method. J Proteome Res 8:483–492

    Article  PubMed  CAS  Google Scholar 

  16. Nyboa M, Olsenb H, Jeuneb B et al (1998) Increased plasma concentration of serum amyloid P component in centenarians with impaired cognitive performance. Dement Geriatr Cogn 9:126–129

    Article  Google Scholar 

Download references

Acknowledgements

Our work on microarray development described herein has been supported in part under grants from the National Cancer Institute under grant NCI R21 12441, R01 CA106402. This work has also received partial support from the National Institutes of Health under R01GM49500.

We would like to thank Dr. Brian Haab and Dr. Chen Songming of the Van Andel Institute for sharing with us the procedures of preparing the antibody arrays. We would also like to thank Stephanie Laurinec, Jes Pedroza, and Missy Tuck for collection of the samples used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Lubman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Li, C., Lubman, D.M. (2011). Analysis of Serum Protein Glycosylation with Antibody–Lectin Microarray for High-Throughput Biomarker Screening. In: Wu, C. (eds) Protein Microarray for Disease Analysis. Methods in Molecular Biology, vol 723. Humana Press. https://doi.org/10.1007/978-1-61779-043-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-043-0_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-042-3

  • Online ISBN: 978-1-61779-043-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics