Skip to main content

Förster Resonance Energy Transfer Methods for Quantification of Protein–Protein Interactions on Microarrays

  • Protocol
  • First Online:
Protein Microarray for Disease Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 723))

Abstract

Methods based on Förster (or fluorescence) resonance energy transfer (FRET) are widely used in various areas of bioanalysis and molecular biology, such as fluorescence microscopy, quantitative real-time polymerase chain reaction (PCR), immunoassays, or enzyme activity assays, just to name a few. In the last years, these techniques were successfully implemented to multiplex biomolecular screening on microarrays. In this review, some fundamental considerations and practical approaches are outlined and it is demonstrated how this very sensitive (and distance-dependent) method can be utilized for microarray-based high-throughput screening (HTS) with a focus on protein microarrays. The advantages and also the demands of this dual-label technique in miniaturized multiplexed formats are discussed with respect to its potential readout modes, such as intensity, dual wavelength, and time-resolved FRET detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  2. Valeur B (2002) Molecular fluorescence – principles and applications. Wiley-VCH, Weinheim

    Google Scholar 

  3. Sapsford KE, Berti L, Medintz IL (2006) Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations. Angew Chem Int Ed 45:4562–4588

    Article  CAS  Google Scholar 

  4. Roda A, Guardigli M, Michelini E, Mirasoli M (2009) Nanobioanalytical luminescence: Förster-type energy transfer methods. Anal Bioanal Chem 393:109–123

    Article  PubMed  CAS  Google Scholar 

  5. Roda A, Guardigli M, Michelini E, Mirasoli M, Pasani P (2003) Analytical bioluminescence and chemiluminescence. Anal Chem 75:462A–470A

    Article  CAS  Google Scholar 

  6. Clegg RM (1996) Fluorescence resonance energy transfer. In: Wang XF, Herman B (eds) Fluorescence imaging spectroscopy and microscopy. Wiley, New York, pp 179–252

    Google Scholar 

  7. Enderlein J (2003) Electrodynamics of fluorescence. http://www.joerg-enderlein.de/fileadmin/downloads/Tutorial.pdf. Accessed 22 July 2009

  8. Selvin PR (2000) The renaissance of fluorescence resonance energy transfer. Nat Struct Biol 7:730–734

    Article  PubMed  CAS  Google Scholar 

  9. Szollosi J, Damjanovich S, Matyus L (1998) Application of fluorescence resonance energy transfer in the clinical laboratory: routine and research. Cytometry B 34:159–179

    Article  CAS  Google Scholar 

  10. Williams C (2004) cAMP detection methods in HTS: selecting the best from the rest. Nat Rev Drug Discov 3:125–135

    Article  PubMed  CAS  Google Scholar 

  11. Bremer C, Tung CH, Weissleder R (2001) In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat Med 7:743–748

    Article  PubMed  CAS  Google Scholar 

  12. Kohl T, Heinze KG, Kuhlemann R, Koltermann A, Schwille P (2002) A protease assay for two-photon crosscorrelation and FRET analysis based solely on fluorescent proteins. Proc Natl Acad Sci U S A 99:12161–12166

    Article  PubMed  CAS  Google Scholar 

  13. Yang Y, Babiak P, Reymond JL (2006) Low background FRET-substrates for lipases and esterases suitable for high-throughput screening under basic (pH 11) conditions. Org Biomol Chem 4:1746–1754

    Article  PubMed  CAS  Google Scholar 

  14. Lyon E, Wittwer CT (2009) LightCycler technology in molecular diagnostics. J Mol Diagn 11:93–101

    Article  PubMed  CAS  Google Scholar 

  15. Smith CJ (2005) Quantitative real-time PCR. In: Osborn AM, Smith CJ (eds) Molecular microbial ecology. Taylor & Francis, New York, pp 151–166

    Google Scholar 

  16. Tapp I, Malmberg L, Rennel E, Wik M, Syvanen AC (2000) Homogeneous scoring of single-nucleotide polymorphisms: comparison of the 5′-nuclease TaqMan assay and Molecular Beacon probes. Biotechniques 28:732–738

    PubMed  CAS  Google Scholar 

  17. Goel G, Kumar A, Puniya AK, Chen W, Singh K (2005) Molecular beacon: a multitask probe. J Appl Microbiol 99:435–442

    Article  PubMed  CAS  Google Scholar 

  18. Makhina EN, Nichols CG (2001) Mutant GFP-based FRET analysis of K+ channel organization. In: Lopatin A, Nichols CG (eds) Ion channel localization. Humana, Totowa, pp 261–274

    Chapter  Google Scholar 

  19. Arun KHS, Kaul CL, Ramarao P (2005) Green fluorescent proteins in receptor research: an emerging tool for drug discovery. J Pharmacol Toxicol Methods 51:1–23

    Article  PubMed  CAS  Google Scholar 

  20. Takanishi CL, Bykova EA, Cheng W, Zheng J (2006) GFP-based FRET analysis in live cells. Brain Res 1091:132–139

    Article  PubMed  CAS  Google Scholar 

  21. Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nat Biotechnol 21:1387–1395

    Article  PubMed  CAS  Google Scholar 

  22. Kokko T, Kokko L, Lövgren T, Soukka T (2007) Homogeneous noncompetitive immunoassay for 17beta-estradiol based on fluorescence resonance energy transfer. Anal Chem 79:5935–5940

    Article  PubMed  CAS  Google Scholar 

  23. Mathis G (1993) Rare earth cryptates and homogeneous fluoroimmunoassays with human sera. Clin Chem 39:1953–1959

    PubMed  CAS  Google Scholar 

  24. Kim SH, Jeyakumar M, Katzenellenbogen JA (2007) Dual-mode fluorophore-doped nickel nitrilotriacetic acid-modified silica nanoparticles combine histidine-tagged protein purification with site-specific fluorophore labeling. J Am Chem Soc 129:13254–13264

    Article  PubMed  CAS  Google Scholar 

  25. Kürner JM, Wolfbeis OS, Klimant I (2002) Homogeneous luminescence decay time-based assay using energy transfer from nanospheres. Anal Chem 74:2151–2156

    Article  Google Scholar 

  26. Valanne A, Lindroos H, Lövgren T, Soukka T (2005) A novel homogeneous assay format utilising proximity dependent fluorescence energy transfer between particulate labels. Anal Chim Acta 539:251–256

    Article  CAS  Google Scholar 

  27. Kuningas K, Ukonaho T, Päkkilä H, Rantanen T, Rosenberg J, Lövgren T, Soukka T (2006) Upconversion fluorescence resonance energy transfer in a homogeneous immunoassay for estradiol. Anal Chem 78:4690–4696

    Article  PubMed  CAS  Google Scholar 

  28. Shen Y, Wu BL (2009) Microarray-based genomic DNA profiling technologies in ­clinical molecular diagnostics. Clin Chem 55:659–669

    Article  PubMed  CAS  Google Scholar 

  29. Hinds DA, Stuve LL, Nilsen GB, Halperin E, Eskin E, Ballinger DG, Frazer KA, Cox DR (2005) Whole-genome patterns of common DNA variation in three human populations. Science 307:1072–1079

    Article  PubMed  CAS  Google Scholar 

  30. Uttamchandani M, Neo JL, Ong BNZ, Moochhala S (2008) Applications of microarrays in pathogen detection and biodefence. Trends Biotechnol 27:53–61

    Article  PubMed  Google Scholar 

  31. Ahmed FE (2004) DNA-based methods for GMO detection: historical developments and future prospects. In: Ahmed FE (ed) Testing of genetically modified organisms in foods. Haworth, Binghamton, pp 221–253

    Google Scholar 

  32. Hakes L, Pinney JW, Robertson DL, Lovell SC (2008) Protein-protein interaction networks and biology – what’s the connection? Nat Biotechnol 26:69–72

    Article  PubMed  CAS  Google Scholar 

  33. Caiazzo RJ Jr, Maher AJ, Drummond MP, Lander CI, Tassinari OW, Nelson BP, Liu BCS (2009) Protein microarrays as an application for disease biomarkers. Proteomics Clin Appl 3:138–147

    Article  CAS  Google Scholar 

  34. Hartmann M, Roeraade J, Stoll D, Templin MF, Joos TO (2009) Protein microarrays for diagnostic assays. Anal Bioanal Chem 393:1407–1416

    Article  PubMed  CAS  Google Scholar 

  35. Jonkheijm P, Weinrich D, Schroeder H, Niemeyer CM, Waldmann H (2008) Chemical strategies for generating protein biochips. Angew Chem Int Ed 47:9618–9647

    Article  CAS  Google Scholar 

  36. Seidel M, Niessner R (2008) Automated analytical microarrays: a critical review. Anal Bioanal Chem 391:1521–1544

    Article  PubMed  CAS  Google Scholar 

  37. Kersten B, Wanker EE, Hoheisel JD, Angenendt P (2005) Multiplex approaches in protein microarray technology. Expert Rev Proteomics 2:499–510

    Article  PubMed  CAS  Google Scholar 

  38. Schäferling M, Nagl S (2006) Optical technologies for the read out and quality control of DNA and protein microarrays. Anal Bioanal Chem 385:500–517

    Article  PubMed  Google Scholar 

  39. Nagl S, Schaeferling M, Wolfbeis OS (2005) Fluorescence analysis in microarray technology. Microchim Acta 151:1–21

    Article  CAS  Google Scholar 

  40. Templin MF, Stoll D, Schwenk JM, Pötz O, Kramer S, Joos TO (2003) Protein microarrays: promising tools for proteomic research. Proteomics 3:2155–2166

    Article  PubMed  CAS  Google Scholar 

  41. Schäferling M, Schiller S, Paul H, Kruschina M, Pavlickova P, Giammasi C, Kambhampati D (2002) Application of self-assembly techniques in the design of biocompatible protein microarray surfaces. Electrophoresis 23:3097–3105

    Article  Google Scholar 

  42. MacBeath G (2002) Protein microarrays and proteomics. Nat Genet 32:526–532

    Article  PubMed  CAS  Google Scholar 

  43. Schwartz DE, Gong P, Shepard KL (2008) Time-resolved Förster-resonance-energy-transfer DNA assay on an active CMOS microarray. Biosens Bioelectron 24:383–390

    Article  PubMed  CAS  Google Scholar 

  44. Frutos AG, Pal S, Quesada M, Lahiri J (2002) Method for detection of single-base mismatches using bimolecular beacons. J Am Chem Soc 124:2396–2397

    Article  PubMed  CAS  Google Scholar 

  45. Fang X, Liu X, Schuster S, Tan WJ (1999) Designing a novel molecular beacon for surface-immobilized DNA hybridization studies. J Am Chem Soc 121:2921–2922

    Article  CAS  Google Scholar 

  46. Kim H, Kane MD, Kim S, Dominguez W, Applegate BM, Savikhin S (2007) A molecular beacon DNA microarray system for rapid detection of E. coli O157:H7 that eliminates the risk of a false negative signal. Biosens Bioelectron 22:1041–1047

    Article  PubMed  CAS  Google Scholar 

  47. Diaz-Mochon JJ, Bialy L, Bradley M (2006) Dual colour, microarray-based, analysis of 10,000 protease substrates. Chem Commun 38:3984–3986

    Article  Google Scholar 

  48. Kong A, Leboucher P, Leek R, Calleja V, Winter S, Harris A, Parker PJ, Larijani B (2006) Prognostic value of an activation state marker for epidermal growth factor receptor in tissue microarrays of head and neck cancer. Cancer Res 66:2834–2843

    Article  PubMed  CAS  Google Scholar 

  49. Usui K, Takahashi M, Nokihara K, Mihara H (2004) Peptide arrays with designed α-helical structures for characterization of proteins from FRET fingerprint patterns. Mol Diver 8:209–218

    Article  CAS  Google Scholar 

  50. Castellana ET, Cremer PS (2007) Imaging large arrays of supported lipid bilayers with a macroscope. Biointerphases 2:57–63

    Article  PubMed  CAS  Google Scholar 

  51. Vogel KW, Riddle SM, Horton RA, Robers MB, Michaud GA (2008) FRET-based kinase and ubiquitination assay using a fluorescent fusion protein substrate and a luminescent metal complex, and screening applications. PCT Int. Appl. WO 2008011601

    Google Scholar 

  52. Herman P, Lin HJ, Lakowicz JR (2003) Lifetime-based imaging. In: Vo-Dinh T (ed) Biomedical photonics handbook. CRC, Boca Raton, pp 9.1–9.30

    Google Scholar 

  53. Nagl S, Bauer R, Sauer U, Preininger C, Bogner U, Schäferling M (2008) Microarray analysis of protein-protein interactions based on FRET using subnanosecond-resolved fluorescence lifetime imaging. Biosens Bioelectron 24:397–402

    Article  PubMed  CAS  Google Scholar 

  54. Woods RJ, Scypinski S, Cline Love LJ, Ashworth HA (1984) Transient digitizer for the determination of microsecond luminescence lifetimes. Anal Chem 56:1395–1400

    Article  PubMed  CAS  Google Scholar 

  55. Hartmann M, Schrenk M, Doettinger A, Nagel S, Roeraade J, Joos TO, Templin MF (2008) Expanding assay dynamics: a combined competitive and direct assay system for the quantification of proteins in multiplexed immunoassays. Clin Chem 54:956–963

    Article  PubMed  CAS  Google Scholar 

  56. Cervino C, Sauceda JC, Niessner R, Knopp D (2008) Mycotoxin analysis by automated flow-through immunoassay with chemoluminescence readout. Luminescence 23:206–207

    Google Scholar 

  57. Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5:507–516

    Article  PubMed  CAS  Google Scholar 

  58. Kokko T, Liljenbäck T, Peltola MT, Kokko L, Soukka T (2008) Homogeneous dual-parameter assay for prostate-specific antigen based on fluorescence resonance energy transfer. Anal Chem 80:9763–9768

    Article  PubMed  CAS  Google Scholar 

  59. Kuningas K, Päkkilä H, Ukonaho T, Rantanen T, Lövgren T, Soukka T (2007) Upconversion fluorescence enables homogeneous immunoassay in whole blood. Clin Chem 53:145–146

    Article  PubMed  CAS  Google Scholar 

  60. Campbell RE (2009) Fluorescent-protein-based biosensors: modulation of energy ­transfer as a design principle. Anal Chem 81:5972–5979

    Article  PubMed  CAS  Google Scholar 

  61. Malicka J, Gryczynski I, Fang J, Kusba J, Lakowicz JR (2003) Increased resonance energy transfer between fluorophores bound to DNA in proximity to metallic silver particles. Anal Biochem 315:160–169

    Article  PubMed  CAS  Google Scholar 

  62. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562

    Article  PubMed  CAS  Google Scholar 

  63. Ray PC, Fortner A, Darbha GK (2006) Gold nanoparticle based FRET assay for the detection of DNA cleavage. J Phys Chem B 110:20745–20748

    Article  PubMed  CAS  Google Scholar 

  64. Haas E, Wilchek M, Katchalski-Katzir E, Steinberg IZ (1975) Distribution of end-to-end distances of oligopeptides in solution as estimated by energy transfer. Proc Natl Acad Sci U S A 72:1807–1811

    Article  PubMed  CAS  Google Scholar 

  65. Borochov-Neori H, Montal M (1989) Rhodopsin-G-protein interactions monitored by resonance energy transfer. Biochemistry 28:1711–1718

    Article  PubMed  CAS  Google Scholar 

  66. Kosk-Kosicka D, Bzdega T, Wawrzynow A (1989) Fluorescence energy transfer studies of purified erythrocyte calcium ATPase. Calcium regulated activation by oligomerization. J Biol Chem 264:19495–19499

    PubMed  CAS  Google Scholar 

  67. Ha T, Rasnik I, Cheng W, Babcock HP, Gauss GH, Lohman TM, Chu S (2002) Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase. Nature 419:638–641

    Article  PubMed  CAS  Google Scholar 

  68. Schuler B, Lipman EA, Eaton WA (2002) Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature 419:743–747

    Article  PubMed  CAS  Google Scholar 

  69. Kokko T, Kokko L, Soukka T (2009) Terbium(III) chelate as an efficient donor for multiple-wavelength fluorescent acceptors. J Fluoresc 19:159–164

    Article  PubMed  CAS  Google Scholar 

  70. Selvin PR (2002) Principles and biophysical applications of lanthanide-based probes. Annu Rev Biophys Biomol Struct 31:275–302

    Article  PubMed  CAS  Google Scholar 

  71. Patterson GH, Piston DW, Barisas BG (2000) Förster distances between green fluorescent protein pairs. Anal Biochem 284:438–440

    Article  PubMed  CAS  Google Scholar 

  72. Medintz IL, Clapp AR, Melinger JS, Deschamps JR, Mattoussi H (2005) A reagentless biosensing assembly based on quantum dot-donor Förster resonance energy transfer. Adv Mater 17:2450–2455

    Article  CAS  Google Scholar 

  73. Kim JH, Morikis D, Ozkan M (2004) Adaptation of inorganic quantum dots for stable molecular beacons. Sens Actuators B 102:315–319

    Article  Google Scholar 

  74. Selvin PR, Rana TM, Hearst JE (1994) Luminescence resonance energy transfer. J Am Chem Soc 116:6029–6030

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schäferling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Schäferling, M., Nagl, S. (2011). Förster Resonance Energy Transfer Methods for Quantification of Protein–Protein Interactions on Microarrays. In: Wu, C. (eds) Protein Microarray for Disease Analysis. Methods in Molecular Biology, vol 723. Humana Press. https://doi.org/10.1007/978-1-61779-043-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-043-0_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-042-3

  • Online ISBN: 978-1-61779-043-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics