Skip to main content

Large-Scale Insertional Mutagenesis in Magnaporthe oryzae by Agrobacterium tumefaciens-Mediated Transformation

  • Protocol
  • First Online:
Fungal Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 722))

Abstract

With genome sequences of more and more fungi become available, high-throughput systematic ­mutagenesis is desirable for functional genomics studies. While a number of random insertional mutagenesis and targeted gene disruption approaches have been used in filamentous fungi, Agrobacterium tumefaciens-mediated Transformation (ATMT) remains one of the most effective methods for identifying genes required for specific fungal developmental or infection processes. Because of its simplicity, ATMT is suitable for large-scale insertion mutagenesis in fungi. Magnaporthe oryzae, the rice blast fungus is a model for studying host–pathogen interactions. Here, we describe protocols for generating a M. oryzae mutant library consisting of over 70,000 ATMT transformants and for identifying genes ­disrupted by T-DNA in the mutants by TAIL-PCR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dean, R.A., Talbot, N.J., Ebbole, D.J., Farman, M.L., Mitchell, T.K., Orbach, M.J., et al. (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434, 980–986.

    Article  PubMed  CAS  Google Scholar 

  2. Galagan, J.E., Henn, M.R., Ma, L.J., Cuomo, C.A., and Birren, B. (2005) Genomics of the fungal kingdom: insights into eukaryotic biology. Genome Res. 15, 1620–1631.

    Article  PubMed  CAS  Google Scholar 

  3. Xu, J.R., Peng, Y.L., Dickman, M.B., and Sharon, A. (2006) The dawn of fungal pathogen genomics. Annu. Rev. Phytopathol. 44, 337–366.

    Article  PubMed  CAS  Google Scholar 

  4. Wilson, R.A., and Talbot, N.J. (2009) Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nature Rev.Microbiol. 7, 185–195.

    Article  CAS  Google Scholar 

  5. Weld, R.J., Plummer, K.M., Carpenter, M.A., and Ridgway H.J. (2006) Approaches to functional genomics in filamentous fungi. Cell Res. 16, 31–44.

    Article  PubMed  CAS  Google Scholar 

  6. Hamer, L., DeZwaan, T.M., Montenegro-Chamorro, M.V., Frank, S.A., and Hamer, J.E. (2001) Recent advances in large-scale transposon mutagenesis. Curr. Opin. Chem. Biol. 5, 67–73.

    Article  PubMed  CAS  Google Scholar 

  7. Maier, F.J. and Schäfer, W. (1999) Mutagenesis via insertional- or restriction enzyme-­mediated integration (REMI) as a tool to tag pathogenicity related genes in plant pathogenic fungi. Biol. Chem. 380, 855–864.

    Article  PubMed  CAS  Google Scholar 

  8. Mullins, E.D. and Kang, S. (2001) Transformation: a tool for studying fungal pathogens of plants. Cell Mol. Life Sci. 58, 2043–2052.

    Article  PubMed  CAS  Google Scholar 

  9. Caroline, B., Michielse, A.E., Paul, J.J., Hooykaas-Cees, A.M., van den Hondel, J.J., and Ram, F.J. (2005) Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr. Genet. 48, 1–17.

    Article  Google Scholar 

  10. Zhu, J., Oger, P.M., Schrammeijer, B., Hooykaas, P.J., Farrand, S.K., and Winans, S.C. (2000) The bases of crown gall tumorigenesis. J. Bacteriol. 182, 3885–3895.

    Article  PubMed  CAS  Google Scholar 

  11. Hoekema, A., Hirsch, P.R., Hooykaas, P.J., and Schilperoort, R.A. (1983) A binary vector strategy based on separation of Vir-region and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303, 179–180.

    Article  CAS  Google Scholar 

  12. Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H.M., Shinn, P., and et al. (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653–657.

    Article  PubMed  Google Scholar 

  13. Jeon, J.S., Lee, S., Jung, K.H., Jun, S.H., Jeong, D.H., Lee, J., and et al. (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 22, 561–570.

    Article  PubMed  CAS  Google Scholar 

  14. Bundock, P., Dulk-Ras, A., Beijersbergen, A., and Hooykaas, P.J. (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J. 14, 3206–3214.

    PubMed  CAS  Google Scholar 

  15. Groot, M.J., de Bundock, P., Hooykaas, P.J., and Beijersbergen, A.G. (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nature Biotech. 16, 839–842.

    Article  Google Scholar 

  16. Rho, H.S., Kang, S., and Lee, L.H. (2001) Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus Magnaporthe grisea. Mol. Cells 12, 407–411.

    PubMed  CAS  Google Scholar 

  17. Tsuji, G., Fujii, S., Fujihara, N., Hirose, C., Tsuge, S., Shiraishi, T., and Kubo, Y. (2003) Agrobacterium tumefaciens-mediated transformation for random insertional mutagenesis in Colletotrichum lagenarium. J. Gen. Plant Pathol. 69, 230–239.

    Article  CAS  Google Scholar 

  18. Frisch, D.A., Harris-Hailer, L.W., Yokubaitis, N.T., Thomas, T.L., Hardin, S.H., and Hall, T.C. (1995) Complete sequence of the binary vector Bin 19. Plant Mol. Biol. 27, 405–409.

    Article  PubMed  CAS  Google Scholar 

  19. Hellens, R., Mullineaux, P., and Klee, H. (2000) A guide to Agrobacterium binary Ti vectors. Trends Plant Sci. 5, 446–451.

    Article  PubMed  CAS  Google Scholar 

  20. Peng, Y.L., and Shishiyama, J. (1988) Temporal sequence of cytological events in rice leaves infected with Pyricularia oryzae. Can. J. Bot. 66, 730–735.

    Article  Google Scholar 

  21. Liu, Y.G., Mitsukawa, N., Oosumi, T., and Whittier, R.F. (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8, 457–462.

    Article  PubMed  CAS  Google Scholar 

  22. Doyle, J.J., and Doyle, J.L. (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11–15.

    Google Scholar 

  23. Sambrook, J., Fritsch, E.F., and Maniatis, T. (1988) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, New York.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the 973 program (Grant No. 2006CB101901) and by the Innovative Project of State Key Laboratory for Agrobiotechnology (Grant No. 2008SKLAB0103) to Y. -L. Peng from the Ministry of Sciences and Technology, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-Liang Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Chen, XL., Yang, J., Peng, YL. (2011). Large-Scale Insertional Mutagenesis in Magnaporthe oryzae by Agrobacterium tumefaciens-Mediated Transformation. In: Xu, JR., Bluhm, B. (eds) Fungal Genomics. Methods in Molecular Biology, vol 722. Humana Press. https://doi.org/10.1007/978-1-61779-040-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-040-9_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-039-3

  • Online ISBN: 978-1-61779-040-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics