Skip to main content

Identification, Chemical Synthesis, and Biological Functions of Unusual Polyamines Produced by Extreme Thermophiles

  • Protocol
  • First Online:
Book cover Polyamines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 720))

Abstract

Unusual long polyamines such as caldopentamine and caldohexamine, and branched polyamines such as tetrakis(3-aminopropyl)ammonium and N 4-aminopropylspermidine were often found in cells of extreme thermophiles and hyperthermophiles belonging to both Bacteria and Archaea domains. Some of these unusual polyamines are essential for life at extreme temperatures. In some cases, the unusual polyamines also exist in cells of nonthermophilic organisms and play important physiological roles under normal conditions. Methods for chromatographic analysis, isolation, and chemical syntheses of unusual polyamines as well as experimental methods for measuring their physiological roles are discussed. Especially, many newly improved methods for chemical syntheses are presented in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cohen SS (1998) A guide to the polyamines. Oxford University Press, USA

    Google Scholar 

  2. Oshima T (1978) Novel polyamines of extremely thermophilic bacteria. In: Friedman SM (ed) Biochemistry of thermophily. Academic, New York, pp 211–220

    Google Scholar 

  3. Hosoya R, Hamana K, Niitsu M, Itoh T (2004) Polyamine analysis for chemotaxonomy of thermophilic eubacteria: polyamine distribution profiles within the orders Aquificales, Thermo­togales, Thermodesulofobacteriales, Thermales, Thermoanaerobacteriales, Clostridiales and Bacillales. J Gen Appl Microbiol 50:271–287

    Article  PubMed  CAS  Google Scholar 

  4. Hamana K, Hamana H, Niitsu M, Samejima K, Itoh T (1996) Polyamines of hyperthermophilic archaebacteria, Archaeoglobus, Thermococcus, Pyrobaculum and Sulfolobus. Microbes 87:69–76

    CAS  Google Scholar 

  5. Kneifel H, Stetter KO, Andreesen JR, Wiegel J, Konig H, Schobeth SM (1986) Distribution of polyamines in representative species of archaebacteria. System Appl Microbiol 7:241–245

    Article  CAS  Google Scholar 

  6. Oshima T (1983) Novel polyamines in Thermus thermophilus: isolation, identification and chemical synthesis. Meth Enzymol 94:401–411

    Article  CAS  Google Scholar 

  7. Oshima T (2007) Unique polyamines produced by an extreme thermophile, Thermus thermophilus. Amino Acids 33:367–372

    Article  PubMed  CAS  Google Scholar 

  8. Oshima T (1975) Thermine; a new polyamine from an extreme thermophile. Biochem Biophys Res Commun 63:1093–1098

    Article  PubMed  CAS  Google Scholar 

  9. Oshima T (1982) A pentaamine is present in an extreme thermophile. J Biol Chem 257:9913–9914

    PubMed  CAS  Google Scholar 

  10. Oshima T, Hamasaki N, Senshu M, Kakinuma K, Kuwajima I (1987) A new naturally occurring polyamine containing a quaternary ammonium nitrogen. J Biol Chem 262:11979–11981

    PubMed  CAS  Google Scholar 

  11. Oshima T, Imahori K (1999) Description of Thermus thermophilus, comb. nov., a nonsporulating thermophilic bacterium from a Japanese thermal spa. Int J Syst Bacteriol 24:102–112

    Article  Google Scholar 

  12. Oshima T, Baba M (1981) Occurrence of sym-homospermidine in extremely thermophilic bacteria. Biochem Biophys Res Commun 103:156–160

    Article  PubMed  CAS  Google Scholar 

  13. Stillway LW, Walle T (1977) Identification of the unusual polyamines 3, 3’diaminodipropylamine and N, N’-bis(3-aminopropyl)-1, 3-propanediamine in the white shrimp, Penaeus estiferus. Biochem Biophys Res Commun 77:1103–1107

    Article  PubMed  CAS  Google Scholar 

  14. Hamana K, Niitsu M, Samejima K (2000) Occurrence of tertiary branched tetraamines in two aquatic plants. Can J Bot 78:266–269

    CAS  Google Scholar 

  15. Hamana K, Matsuzaki S, Niitsu M, Samejima K (1992) Distribution of unusual polyamines in leguminous seeds. Can J Bot 70:1984–1990

    Article  CAS  Google Scholar 

  16. Carteni-Farina M, Porcelli M, Cacciapouti G, DeRosa M, Gambacorta A, Grant WD, Ross HNM (1985) Polyamines in halophilic archaebacteria. FEMS Microbiol Lett 28:323

    Article  CAS  Google Scholar 

  17. Oshima T (1979) A new polyamine, thermospermine, 1, 12-diamino-4, 8-diazadodecane, from an extreme thermophile. J Biol Chem 254:8720–8722

    PubMed  CAS  Google Scholar 

  18. Knott JM, Romer P, Sumper M (2007) Putative spermine synthases from Thalassiosira pseudonana and Arabidopsis thaliana synthesize thermospermine rather than spermine. FEBS Lett 581:3081–3086

    Article  PubMed  CAS  Google Scholar 

  19. Kakehi J, Kuwashiro Y, Niitsu M, Takahashi T (2008) Thermospermine is required for stem elongation in Arabidopsis thaliana. Plant Cell Physiol 49:1342–1349

    Article  PubMed  CAS  Google Scholar 

  20. Muniz L, Minguet EG, Singh SK, Pesquet E, Vera-Sirera F, Moreau-Courtois CL, Carbonell J, Blazquez MA, Touminen H (2008) ACAULIS5 controls Arabidopsis xylem specification through the prevention of premature cell death. Development 135:2573–2582

    Article  PubMed  CAS  Google Scholar 

  21. Imai A, Akiyama T, Kato T, Sato S, Tabata S, Yamamoto KT, Takahashi T (2004) Spermine is not essential for survival of Arabidopsis. FEBS Lett 556:148–152

    Article  PubMed  CAS  Google Scholar 

  22. Yamaguchi K, Takahashi Y, Berberich T, Imai A, Takahashi T, Michael AJ, Kusano T (2007) A protective role for the polyamine spermine against drought stress in arabidopsis. Biochem Biophys Res Commun 352:486–490

    Article  PubMed  CAS  Google Scholar 

  23. Bannard RAB, Casselman AA, Cockburn WF, Brown GM (1958) Guanidine compounds II. Preparation of Mono- and N, N-di-alkylguanidines. Can J Chem 36:1541–1549

    Article  CAS  Google Scholar 

  24. Fernandes O, Ferreira MA (2000) Combined ion-pair extraction and gas chromatography-mass spectrometry for simultaneous determination of diamines, polyamines and aromatic amines in Port wine and grape juice. J Chromatogr A 886:183–195

    Article  Google Scholar 

  25. Niitsu M, Samejima K, Matsuzaki S, Hamana K (1993) Systematic analysis of naturally occurring linear and branched polyamines by gas chromatography and gas chromatography-mass spectrometry. J Chromatogr 641:115–123

    Article  CAS  Google Scholar 

  26. Shirahata A, Takeda Y, Kawase M, Samejima K (1983) detection of spermine and thermospermine by thin-layer chromatoraphy. J Chromatogr 262:451–454

    Article  CAS  Google Scholar 

  27. Oshima T, Kawahata S (1983) Homocaldopentamine: a new naturally occurring pentaamine. J Biochem 93:1455–1456

    PubMed  CAS  Google Scholar 

  28. Chantrapromma K, McManis JS, Ganem B (1980) The chemistry of naturally occurring polyamines. A total synthesis of thermospermine. Tetrahedron Lett 21:2475–2476

    Article  CAS  Google Scholar 

  29. Niitsu M, Samejima K (1986) Syntheses of a series of linear pentaamines with three and four methylene chain intervals. Chem Pharm Bull 34:1032–1038

    Article  CAS  Google Scholar 

  30. Ohnuma M, Terui Y, Tamakoshi M, Mitome H, Niitsu M, Samejima K, Kawashima E, Oshima T (2005) N 1-Aminopropylagmatine, a New Polyamine Produced as a Key Intermediate in Polyamine Biosynthesis of an Extreme Thermophile, Thermus thermophilus. J Biol Chem 280:30073–30082

    Article  PubMed  CAS  Google Scholar 

  31. Lawson WB, Leafer MD, Tewes A, Rao GJS (1968) Alkilation of serine at the active site of trypsin Hoppe-Seyler’s. Z Physiol Chem 349:251–161

    Article  CAS  Google Scholar 

  32. Hayrapetyan A, Grosjean H, Helm M (2009) Effect of a quarternary pentamine on RNA stabilization and enzymatic methylation. Biol Chem 390:851–861

    Article  PubMed  CAS  Google Scholar 

  33. Terui Y, Ohnuma M, Hiraga K, Kawashima E, Oshima T (2005) Stabilization of nucleic acids by unusual polyamines produced by an extreme thermophile, Thermus thermophilus. Biochem J 388:427–433

    Article  PubMed  CAS  Google Scholar 

  34. Grosjean H, Oshima T (2007) How nucleic acids cope with high temperature. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, pp 39–56

    Google Scholar 

  35. Johnson NP, Macquet JP, Wiebers JL, Monsarrat B (1982) Structures of the adducts formed between [Pt(dien)Cl]Cl and DNA in vitro. Nucleic Acids Res 10:5255–5271

    Article  PubMed  CAS  Google Scholar 

  36. Lindahl T, Nyberg B (1972) Rate of depurination of native deoxyribonucleic acid. Biochemistry 19:3610–3618

    Article  Google Scholar 

  37. Bachrach U (1970) Metabolism and function of spermine and related polyamines. Ann Rev Microbiol 24:109–134

    Article  CAS  Google Scholar 

  38. Tabor H, Tabor CH (1972) Biosynthesis and metabolism of 1, 4-diaminobutane, spermidine, spermine, and related amines. Advan Enzymol 36:203–268

    CAS  Google Scholar 

  39. Ohno-Iwashita Y, Oshima T, Imahori K (1975) In vitro protein synthesis at elevated temperature by an extract of an extreme thermophile: effects of polyamines on the polyuridylic acid-directed reaction. Arch Biochem Biophys 171:490–499

    Article  CAS  Google Scholar 

  40. Uzawa T, Hamasaki N, Oshima T (1993) Effects of novel polyamines on cell-free polypeptide synthesis catalyzed by Thermus thermophilus HB8 extracts. J Biochem 114:478–486

    PubMed  CAS  Google Scholar 

  41. Uzawa T, Yamagishi A, Nishikawa K, Oshima T (1994) Effects of unusual polyamines on pheylalanyl-tRNA formation. J Biochem 115:830–832

    PubMed  CAS  Google Scholar 

  42. Nierenberg MW, Matthaei JH (1961) The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci USA 47:1588–1602

    Article  Google Scholar 

  43. Conway TW, Lipmann F (1964) Characterization of a ribosome-linked guanosine triphosphate in Escherichia coli extracts. Proc Natl Acad Sci USA 52:1462–1469

    Article  PubMed  CAS  Google Scholar 

  44. Tamakoshi M, Yaoi T, Oshima T, Yamagishi A (1999) An efficient gene replacement and deletion system for an extreme thermophile, Thermus thermophilus. FEMS Microbiol Lett 173:431–437

    Article  PubMed  CAS  Google Scholar 

  45. Hoseki J, Yano T, Koyama Y, Kuramitsu S, Kagamiyama H (1999) Directed evolution of thermostable kanamycin-resistance gene: a convenient selection marker for Thermus thermophilus. J Biochem 126:951–956

    PubMed  CAS  Google Scholar 

  46. Nakamura A, Takakura Y, Kobayashi H, Hoshino T (2005) In vivo directed evolution for thermostabilization of Escherichia coli hygroycin B phosphotransferase and the use of the gene as a selection marker in the host-vector system of Thermus thermophilus. J Biosci Bioeng 100:158–163

    Article  PubMed  CAS  Google Scholar 

  47. Zubay G (1962) The isolation and fractionation of soluble ribonucleic acid. J Mol Biol 4:347–356

    Google Scholar 

Download references

Acknowledgements

Studies cited in this article were done by many former colleagues in our laboratories in University of Tokyo, Mitsubishi-Kasei Institute of Life Sciences, Tokyo Institute of Technology, Tokyo University of Pharmacy and Life Science, and the Institute of Environmental Microbiology, Kyowa-kako Company. Especially the authors are grateful to Drs. Mio Ohnuma, Taketoshi Uzawa, Yoshiko Ohno-Iwashita, and Nobuko Hamasaki-Katagiri.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Oshima, T., Moriya, T., Terui, Y. (2011). Identification, Chemical Synthesis, and Biological Functions of Unusual Polyamines Produced by Extreme Thermophiles. In: Pegg, A., Casero, Jr., R. (eds) Polyamines. Methods in Molecular Biology, vol 720. Humana Press. https://doi.org/10.1007/978-1-61779-034-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-034-8_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-033-1

  • Online ISBN: 978-1-61779-034-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics