Advertisement

Polyamines pp 81-111 | Cite as

Identification, Chemical Synthesis, and Biological Functions of Unusual Polyamines Produced by Extreme Thermophiles

  • Tairo Oshima
  • Toshiyuki Moriya
  • Yusuke Terui
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 720)

Abstract

Unusual long polyamines such as caldopentamine and caldohexamine, and branched polyamines such as tetrakis(3-aminopropyl)ammonium and N 4-aminopropylspermidine were often found in cells of extreme thermophiles and hyperthermophiles belonging to both Bacteria and Archaea domains. Some of these unusual polyamines are essential for life at extreme temperatures. In some cases, the unusual polyamines also exist in cells of nonthermophilic organisms and play important physiological roles under normal conditions. Methods for chromatographic analysis, isolation, and chemical syntheses of unusual polyamines as well as experimental methods for measuring their physiological roles are discussed. Especially, many newly improved methods for chemical syntheses are presented in this article.

Key words

Pentamine Hexamine Branched polyamine Quaternary polyamine Thermophiles Protein synthesis Depurination Reverse genetics 

Notes

Acknowledgements

Studies cited in this article were done by many former colleagues in our laboratories in University of Tokyo, Mitsubishi-Kasei Institute of Life Sciences, Tokyo Institute of Technology, Tokyo University of Pharmacy and Life Science, and the Institute of Environmental Microbiology, Kyowa-kako Company. Especially the authors are grateful to Drs. Mio Ohnuma, Taketoshi Uzawa, Yoshiko Ohno-Iwashita, and Nobuko Hamasaki-Katagiri.

References

  1. 1.
    Cohen SS (1998) A guide to the polyamines. Oxford University Press, USAGoogle Scholar
  2. 2.
    Oshima T (1978) Novel polyamines of extremely thermophilic bacteria. In: Friedman SM (ed) Biochemistry of thermophily. Academic, New York, pp 211–220Google Scholar
  3. 3.
    Hosoya R, Hamana K, Niitsu M, Itoh T (2004) Polyamine analysis for chemotaxonomy of thermophilic eubacteria: polyamine distribution profiles within the orders Aquificales, Thermo­togales, Thermodesulofobacteriales, Thermales, Thermoanaerobacteriales, Clostridiales and Bacillales. J Gen Appl Microbiol 50:271–287PubMedCrossRefGoogle Scholar
  4. 4.
    Hamana K, Hamana H, Niitsu M, Samejima K, Itoh T (1996) Polyamines of hyperthermophilic archaebacteria, Archaeoglobus, Thermococcus, Pyrobaculum and Sulfolobus. Microbes 87:69–76Google Scholar
  5. 5.
    Kneifel H, Stetter KO, Andreesen JR, Wiegel J, Konig H, Schobeth SM (1986) Distribution of polyamines in representative species of archaebacteria. System Appl Microbiol 7:241–245CrossRefGoogle Scholar
  6. 6.
    Oshima T (1983) Novel polyamines in Thermus thermophilus: isolation, identification and chemical synthesis. Meth Enzymol 94:401–411CrossRefGoogle Scholar
  7. 7.
    Oshima T (2007) Unique polyamines produced by an extreme thermophile, Thermus thermophilus. Amino Acids 33:367–372PubMedCrossRefGoogle Scholar
  8. 8.
    Oshima T (1975) Thermine; a new polyamine from an extreme thermophile. Biochem Biophys Res Commun 63:1093–1098PubMedCrossRefGoogle Scholar
  9. 9.
    Oshima T (1982) A pentaamine is present in an extreme thermophile. J Biol Chem 257:9913–9914PubMedGoogle Scholar
  10. 10.
    Oshima T, Hamasaki N, Senshu M, Kakinuma K, Kuwajima I (1987) A new naturally occurring polyamine containing a quaternary ammonium nitrogen. J Biol Chem 262:11979–11981PubMedGoogle Scholar
  11. 11.
    Oshima T, Imahori K (1999) Description of Thermus thermophilus, comb. nov., a nonsporulating thermophilic bacterium from a Japanese thermal spa. Int J Syst Bacteriol 24:102–112CrossRefGoogle Scholar
  12. 12.
    Oshima T, Baba M (1981) Occurrence of sym-homospermidine in extremely thermophilic bacteria. Biochem Biophys Res Commun 103:156–160PubMedCrossRefGoogle Scholar
  13. 13.
    Stillway LW, Walle T (1977) Identification of the unusual polyamines 3, 3’diaminodipropylamine and N, N’-bis(3-aminopropyl)-1, 3-propanediamine in the white shrimp, Penaeus estiferus. Biochem Biophys Res Commun 77:1103–1107PubMedCrossRefGoogle Scholar
  14. 14.
    Hamana K, Niitsu M, Samejima K (2000) Occurrence of tertiary branched tetraamines in two aquatic plants. Can J Bot 78:266–269Google Scholar
  15. 15.
    Hamana K, Matsuzaki S, Niitsu M, Samejima K (1992) Distribution of unusual polyamines in leguminous seeds. Can J Bot 70:1984–1990CrossRefGoogle Scholar
  16. 16.
    Carteni-Farina M, Porcelli M, Cacciapouti G, DeRosa M, Gambacorta A, Grant WD, Ross HNM (1985) Polyamines in halophilic archaebacteria. FEMS Microbiol Lett 28:323CrossRefGoogle Scholar
  17. 17.
    Oshima T (1979) A new polyamine, thermospermine, 1, 12-diamino-4, 8-diazadodecane, from an extreme thermophile. J Biol Chem 254:8720–8722PubMedGoogle Scholar
  18. 18.
    Knott JM, Romer P, Sumper M (2007) Putative spermine synthases from Thalassiosira pseudonana and Arabidopsis thaliana synthesize thermospermine rather than spermine. FEBS Lett 581:3081–3086PubMedCrossRefGoogle Scholar
  19. 19.
    Kakehi J, Kuwashiro Y, Niitsu M, Takahashi T (2008) Thermospermine is required for stem elongation in Arabidopsis thaliana. Plant Cell Physiol 49:1342–1349PubMedCrossRefGoogle Scholar
  20. 20.
    Muniz L, Minguet EG, Singh SK, Pesquet E, Vera-Sirera F, Moreau-Courtois CL, Carbonell J, Blazquez MA, Touminen H (2008) ACAULIS5 controls Arabidopsis xylem specification through the prevention of premature cell death. Development 135:2573–2582PubMedCrossRefGoogle Scholar
  21. 21.
    Imai A, Akiyama T, Kato T, Sato S, Tabata S, Yamamoto KT, Takahashi T (2004) Spermine is not essential for survival of Arabidopsis. FEBS Lett 556:148–152PubMedCrossRefGoogle Scholar
  22. 22.
    Yamaguchi K, Takahashi Y, Berberich T, Imai A, Takahashi T, Michael AJ, Kusano T (2007) A protective role for the polyamine spermine against drought stress in arabidopsis. Biochem Biophys Res Commun 352:486–490PubMedCrossRefGoogle Scholar
  23. 23.
    Bannard RAB, Casselman AA, Cockburn WF, Brown GM (1958) Guanidine compounds II. Preparation of Mono- and N, N-di-alkylguanidines. Can J Chem 36:1541–1549CrossRefGoogle Scholar
  24. 24.
    Fernandes O, Ferreira MA (2000) Combined ion-pair extraction and gas chromatography-mass spectrometry for simultaneous determination of diamines, polyamines and aromatic amines in Port wine and grape juice. J Chromatogr A 886:183–195CrossRefGoogle Scholar
  25. 25.
    Niitsu M, Samejima K, Matsuzaki S, Hamana K (1993) Systematic analysis of naturally occurring linear and branched polyamines by gas chromatography and gas chromatography-mass spectrometry. J Chromatogr 641:115–123CrossRefGoogle Scholar
  26. 26.
    Shirahata A, Takeda Y, Kawase M, Samejima K (1983) detection of spermine and thermospermine by thin-layer chromatoraphy. J Chromatogr 262:451–454CrossRefGoogle Scholar
  27. 27.
    Oshima T, Kawahata S (1983) Homocaldopentamine: a new naturally occurring pentaamine. J Biochem 93:1455–1456PubMedGoogle Scholar
  28. 28.
    Chantrapromma K, McManis JS, Ganem B (1980) The chemistry of naturally occurring polyamines. A total synthesis of thermospermine. Tetrahedron Lett 21:2475–2476CrossRefGoogle Scholar
  29. 29.
    Niitsu M, Samejima K (1986) Syntheses of a series of linear pentaamines with three and four methylene chain intervals. Chem Pharm Bull 34:1032–1038CrossRefGoogle Scholar
  30. 30.
    Ohnuma M, Terui Y, Tamakoshi M, Mitome H, Niitsu M, Samejima K, Kawashima E, Oshima T (2005) N 1-Aminopropylagmatine, a New Polyamine Produced as a Key Intermediate in Polyamine Biosynthesis of an Extreme Thermophile, Thermus thermophilus. J Biol Chem 280:30073–30082PubMedCrossRefGoogle Scholar
  31. 31.
    Lawson WB, Leafer MD, Tewes A, Rao GJS (1968) Alkilation of serine at the active site of trypsin Hoppe-Seyler’s. Z Physiol Chem 349:251–161CrossRefGoogle Scholar
  32. 32.
    Hayrapetyan A, Grosjean H, Helm M (2009) Effect of a quarternary pentamine on RNA stabilization and enzymatic methylation. Biol Chem 390:851–861PubMedCrossRefGoogle Scholar
  33. 33.
    Terui Y, Ohnuma M, Hiraga K, Kawashima E, Oshima T (2005) Stabilization of nucleic acids by unusual polyamines produced by an extreme thermophile, Thermus thermophilus. Biochem J 388:427–433PubMedCrossRefGoogle Scholar
  34. 34.
    Grosjean H, Oshima T (2007) How nucleic acids cope with high temperature. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, pp 39–56Google Scholar
  35. 35.
    Johnson NP, Macquet JP, Wiebers JL, Monsarrat B (1982) Structures of the adducts formed between [Pt(dien)Cl]Cl and DNA in vitro. Nucleic Acids Res 10:5255–5271PubMedCrossRefGoogle Scholar
  36. 36.
    Lindahl T, Nyberg B (1972) Rate of depurination of native deoxyribonucleic acid. Biochemistry 19:3610–3618CrossRefGoogle Scholar
  37. 37.
    Bachrach U (1970) Metabolism and function of spermine and related polyamines. Ann Rev Microbiol 24:109–134CrossRefGoogle Scholar
  38. 38.
    Tabor H, Tabor CH (1972) Biosynthesis and metabolism of 1, 4-diaminobutane, spermidine, spermine, and related amines. Advan Enzymol 36:203–268Google Scholar
  39. 39.
    Ohno-Iwashita Y, Oshima T, Imahori K (1975) In vitro protein synthesis at elevated temperature by an extract of an extreme thermophile: effects of polyamines on the polyuridylic acid-directed reaction. Arch Biochem Biophys 171:490–499CrossRefGoogle Scholar
  40. 40.
    Uzawa T, Hamasaki N, Oshima T (1993) Effects of novel polyamines on cell-free polypeptide synthesis catalyzed by Thermus thermophilus HB8 extracts. J Biochem 114:478–486PubMedGoogle Scholar
  41. 41.
    Uzawa T, Yamagishi A, Nishikawa K, Oshima T (1994) Effects of unusual polyamines on pheylalanyl-tRNA formation. J Biochem 115:830–832PubMedGoogle Scholar
  42. 42.
    Nierenberg MW, Matthaei JH (1961) The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci USA 47:1588–1602CrossRefGoogle Scholar
  43. 43.
    Conway TW, Lipmann F (1964) Characterization of a ribosome-linked guanosine triphosphate in Escherichia coli extracts. Proc Natl Acad Sci USA 52:1462–1469PubMedCrossRefGoogle Scholar
  44. 44.
    Tamakoshi M, Yaoi T, Oshima T, Yamagishi A (1999) An efficient gene replacement and deletion system for an extreme thermophile, Thermus thermophilus. FEMS Microbiol Lett 173:431–437PubMedCrossRefGoogle Scholar
  45. 45.
    Hoseki J, Yano T, Koyama Y, Kuramitsu S, Kagamiyama H (1999) Directed evolution of thermostable kanamycin-resistance gene: a convenient selection marker for Thermus thermophilus. J Biochem 126:951–956PubMedGoogle Scholar
  46. 46.
    Nakamura A, Takakura Y, Kobayashi H, Hoshino T (2005) In vivo directed evolution for thermostabilization of Escherichia coli hygroycin B phosphotransferase and the use of the gene as a selection marker in the host-vector system of Thermus thermophilus. J Biosci Bioeng 100:158–163PubMedCrossRefGoogle Scholar
  47. 47.
    Zubay G (1962) The isolation and fractionation of soluble ribonucleic acid. J Mol Biol 4:347–356Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Tairo Oshima
    • 1
  • Toshiyuki Moriya
    • 1
    • 2
  • Yusuke Terui
    • 3
  1. 1.Institute of Environmental MicrobiologyKyowa-kako Co.MachidaJapan
  2. 2.Department of Molecular BiologyTokyo University of Pharmacy and Life ScienceHachiojiJapan
  3. 3.Faculty of PharmacyChiba Institute of ScienceChoshi, ChibaJapan

Personalised recommendations