Advertisement

Polyamines pp 449-461 | Cite as

Methylated Polyamines as Research Tools

  • Alex R. KhomutovEmail author
  • Janne Weisell
  • Maxim A. Khomutov
  • Nikolay A. Grigorenko
  • Alina R. Simonian
  • Merja R. Häkkinen
  • Tuomo A. Keinänen
  • Mervi T. Hyvönen
  • Leena Alhonen
  • Sergey N. Kochetkov
  • Jouko Vepsäläinen
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 720)

Abstract

Earlier unknown racemic β-methylspermidine (β-MeSpd) and γ-methylspermidine (γ-MeSpd) were ­synthesized starting from crotononitrile or methacrylonitrile and putrescine. Lithium aluminum hydride reduction of the intermediate di-Boc-nitriles resulted in corresponding di-Boc-amines, which after deprotection gave target β- and γ-MeSpd’s. To prepare α-MeSpd, the starting compound, 3-amino-1-butanol, was converted into N-Cbz-3-amino-1-butyl methanesulfonate, which alkylated putrescine to give (after deprotection of amino group) the required α-MeSpd. Novel β- and γ-MeSpd’s in combination with earlier α-MeSpd are useful tools for studying enzymology and cell biology of polyamines.

Key words

Polyamines C-methylated spermidine analogs 

Notes

Acknowledgments

This work was supported by the Academy of Finland (project nos. 124185 and 128702), the Russian Foundation for Basic Research (project nos. 09-04-01272, and 08-04-91777), and the program Molecular and Cell Biology of the Presidium of the Russian Academy of Sciences.

References

  1. 1.
    Casero RA Jr, Woster PM (2009) Recent advances in the development of polyamine analogues as antitumor agents. J Med Chem 52:4551–4573PubMedCrossRefGoogle Scholar
  2. 2.
    Casero RA Jr, Marton LJT (2007) Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Discov 6:373–390PubMedCrossRefGoogle Scholar
  3. 3.
    Lakanen JR, Coward JK, Pegg AE (1992) alpha-Methyl polyamines: metabolically stable spermidine and spermine mimics capable of supporting growth in cells depleted of polyamines. J Med Chem 35:724–734PubMedCrossRefGoogle Scholar
  4. 4.
    Nagarajan S, Ganem B, Pegg AE (1988) Studies of non-metabolizable polyamines that support growth of SV-3T3 cells depleted of natural polyamines by exposure to alpha-difluoromethylornithine. Biochem J 254:373–378PubMedGoogle Scholar
  5. 5.
    Grigorenko NA, Khomutov AR, Keinänen TA, Järvinen A, Alhonen L, Jänne J, Vepsäläinen J (2007) Synthesis of novel optical isomers of α-methylpolyamines. Tetrahedron 63:2257–2262CrossRefGoogle Scholar
  6. 6.
    Räsänen TL, Alhonen L, Sinervirta R, Keinänen T, Herzig K-H, Suppola S, Khomutov AR, Vepsäläinen J, Jänne J (2002) A polyamine analogue prevents acute pancreatitis and restores early liver regeneration in transgenic rats with activated polyamine catabolism. J Biol Chem 277:39867–39872PubMedCrossRefGoogle Scholar
  7. 7.
    Järvinen AJ, Cerrada-Gimenez M, Grigorenko NA, Khomutov AR, Vepsäläinen JJ, Sinervirta RM, Keinänen TA, Alhonen LI, Jänne JE (2006) α-Methyl polyamines: efficient ­synthesis and tolerance studies in vivo and in vitro. First evidence for dormant stereospecificity of polyamine oxidase. J Med Chem 49:399–406PubMedCrossRefGoogle Scholar
  8. 8.
    Järvinen AJ, Keinänen TA, Grigorenko N, Khomutov AR, Uimari A, Vepsäläinen J, Närvänen A, Alhonen L, Jänne J (2006) Guide molecule-driven stereospecific degradation of α-methylpolyamines by polyamine oxidase. J Biol Chem 281:4589–4595PubMedCrossRefGoogle Scholar
  9. 9.
    Hyvönen MT, Keinänen TA, Cerrada-Gimenez M, Sinervirta R, Grigorenko N, Khomutov AR, Vepsäläinen J, Alhonen L, Jänne J (2007) Role of hypusinated eukaryotic translation initiation factor 5A inpolyamine depletion-induced cytostasis. J Biol Chem 282:34700–34706PubMedCrossRefGoogle Scholar
  10. 10.
    Hyvönen MT, Howard MT, Anderson CB, Grigorenko N, Khomutov AR, Vepsäläinen J, Alhonen L, Jänne J, Keinänen TA (2009) Divergent regulation of the key enzymes of polyamine metabolism by chiral alpha-methylated polyamine analogs. Biochem J 422:321–328PubMedCrossRefGoogle Scholar
  11. 11.
    Lebreton L, Jost E, Carboni B, Annat J, Vaultier M, Dutartre P, Renaut P (1999) Structure-immunosuppressive activity relationships of new analogues of 15-deoxyspergualin. 2. Structural modification of the spermidine moiety. J Med Chem 42:4749–4763PubMedCrossRefGoogle Scholar
  12. 12.
    Grigorenko NA, Vepsäläinen J, Järvinen A, Keinänen TA, Alhonen L, Jänne J, Kritsyn AM, Khomutov AR (2004) A new synthesis of alpha-methylspermidine. Bioorg Khim 30:441–445PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Alex R. Khomutov
    • 1
    Email author
  • Janne Weisell
    • 2
  • Maxim A. Khomutov
    • 3
  • Nikolay A. Grigorenko
    • 4
  • Alina R. Simonian
    • 3
  • Merja R. Häkkinen
    • 5
  • Tuomo A. Keinänen
    • 6
  • Mervi T. Hyvönen
    • 6
  • Leena Alhonen
    • 7
  • Sergey N. Kochetkov
    • 3
  • Jouko Vepsäläinen
    • 2
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Department of Biosciences, Biocenter KuopioUniversity of KuopioKuopioFinland
  3. 3.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  4. 4.BASF, GVP/SIBaselSwitzerland
  5. 5.Department of Biosciences, Laboratory of Chemistry, Biocenter KuopioUniversity of KuopioKuopioFinland
  6. 6.Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, Biocenter KuopioUniversity of KuopioKuopioFinland
  7. 7.A.I. Virtanen Institute for Molecular Sciences, Biocenter KuopioUniversity of Eastern finlandKuopioFinland

Personalised recommendations