Polyamines pp 409-425 | Cite as

Methods to Evaluate Alterations in Polyamine Metabolism Caused by Helicobacter pylori Infection

  • Alain P. Gobert
  • Rupesh Chaturvedi
  • Keith T. Wilson
Part of the Methods in Molecular Biology book series (MIMB, volume 720)


Helicobacter pylori is a Gram-negative bacteria that infects the human stomach of half of the world’s ­population. Colonization is followed by infiltration of the gastric mucosa by lymphocytes and myeloid cells. These cells are activated by various bacterial factors, causing them to produce immune/inflammatory mediators, including reactive nitrogen species and polyamines that contribute to cellular damage and the pathogenesis of H. pylori-associated gastric cancer. In vitro experiments have revealed that H. pylori induces macrophage polyamine production by upregulation of the arginase 2/ornithine decarboxylase (ODC) metabolic pathway and enhances hydrogen peroxide synthesis through the activity of spermidine oxidase (SMO). In this chapter, we present a survey of the methods used to analyze the induction and the role of the enzymes related to polyamine metabolism, i.e., arginase, ODC, and SMO in H. pylori-infected macrophages.

Key words

Macrophage Arginase Ornithine decarboxylase Spermine oxidase Helicobacter pylori 



This work was supported by R01 DK053620, R01 AT004821, P01 CA116087, P01 CA028842, P30 DK058404 (Vanderbilt Digestive Disease Center), and a Merit Review Grant from the Office of Medical Research, Department of Veterans Affairs. APG is also supported by a grant from Philippe Foundation.


  1. 1.
    Cover TL, Blaser MJ (2009) Helicobacter pylori in health and disease. Gastroenterology 136:1863–1873PubMedCrossRefGoogle Scholar
  2. 2.
    Wilson KT, Crabtree JE (2007) Immunology of Helicobacter pylori: insights into the failure of the immune response and perspectives on vaccine studies. Gastroenterology 133:288–308PubMedCrossRefGoogle Scholar
  3. 3.
    Gobert AP, McGee DJ, Akhtar M, Mendz GL, Newton JC, Cheng Y, Mobley HL, Wilson KT (2001) Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells: a strategy for bacterial survival. Proc Natl Acad Sci U S A 98:13844–13849PubMedCrossRefGoogle Scholar
  4. 4.
    Gobert AP, Cheng Y, Akhtar M, Mersey BD, Blumberg DR, Cross RK, Chaturvedi R, Drachenberg CB, Boucher JL, Hacker A, Casero RA Jr, Wilson KT (2004) Protective role of arginase in a mouse model of colitis. J Immunol 173:2109–2117PubMedGoogle Scholar
  5. 5.
    Gobert AP, Cheng Y, Wang JY, Boucher JL, Iyer RK, Cederbaum SD, Casero RA Jr, Newton JC, Wilson KT (2002) Helicobacter pylori induces macrophage apoptosis by activation of arginase II. J Immunol 168:4692–4700PubMedGoogle Scholar
  6. 6.
    Chaturvedi R, Cheng Y, Asim M, Bussiere FI, Xu H, Gobert AP, Hacker A, Casero RA Jr, Wilson KT (2004) Induction of polyamine oxidase 1 by Helicobacter pylori causes macrophage apoptosis by hydrogen peroxide release and mitochondrial membrane depolarization. J Biol Chem 279:40161–40173PubMedCrossRefGoogle Scholar
  7. 7.
    Cheng Y, Chaturvedi R, Asim M, Bussiere FI, Scholz A, Xu H, Casero RA Jr, Wilson KT (2005) Helicobacter pylori-induced macrophage apoptosis requires activation of ornithine decarboxylase by c-Myc. J Biol Chem 280:22492–22496PubMedCrossRefGoogle Scholar
  8. 8.
    Bussiere FI, Chaturvedi R, Cheng Y, Gobert AP, Asim M, Blumberg DR, Xu H, Kim PY, Hacker A, Casero RA Jr, Wilson KT (2005) Spermine causes loss of innate immune response to Helicobacter pylori by inhibition of inducible nitric-oxide synthase translation. J Biol Chem 280:2409–2412PubMedCrossRefGoogle Scholar
  9. 9.
    Chaturvedi R, Asim M, Lewis ND, Algood HM, Cover TL, Kim PY, Wilson KT (2007) L-arginine availability regulates inducible nitric oxide synthase-dependent host defense against Helicobacter pylori. Infect Immun 75:4305–4315PubMedCrossRefGoogle Scholar
  10. 10.
    Xu H, Chaturvedi R, Cheng Y, Bussiere FI, Asim M, Yao MD, Potosky D, Meltzer SJ, Rhee JG, Kim SS, Moss SF, Hacker A, Wang Y, Casero RA Jr, Wilson KT (2004) Spermine oxidation induced by Helicobacter pylori results in apoptosis and DNA damage: implications for gastric carcinogenesis. Cancer Res 64:8521–8525PubMedCrossRefGoogle Scholar
  11. 11.
    Wilson KT, Ramanujam KS, Mobley HL, Musselman RF, James SP, Meltzer SJ (1996) Helicobacter pylori stimulates inducible nitric oxide synthase expression and activity in a murine macrophage cell line. Gastroenterology 111:1524–1533PubMedCrossRefGoogle Scholar
  12. 12.
    Gobert AP, Mersey BD, Cheng Y, Blumberg DR, Newton JC, Wilson KT (2002) Cutting edge: urease release by Helicobacter pylori stimulates macrophage inducible nitric oxide synthase. J Immunol 168:6002–6006PubMedGoogle Scholar
  13. 13.
    Corraliza IM, Campo ML, Soler G, Modolell M (1994) Determination of arginase activity in macrophages: a micromethod. J Immunol Methods 174:231–235PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Alain P. Gobert
    • 1
  • Rupesh Chaturvedi
    • 2
  • Keith T. Wilson
    • 2
    • 3
  1. 1.UR454 Unite de Microbiologie, INRASaint-Genes-ChampanelleFrance
  2. 2.Division of Gastroenterology, Hepatology, and Nutrition, Department of MedicineVanderbilt University Medical CenterNashvilleUSA
  3. 3.Veterans Affairs Tennessee Valley Healthcare SystemNashvilleUSA

Personalised recommendations