Advertisement

Polyamines pp 349-364 | Cite as

Procedures to Evaluate the Importance of Dietary Polyamines

  • Paul Acheampong
  • Mary J. Macleod
  • Heather M. WallaceEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 720)

Abstract

Polyamines not only play vital physiological functions including modulating transcription and translation of genetic material, cell proliferation and growth, ion channel regulation and cell signaling, but have also been cited in the pathogenesis of diseases. Many plant and animal sources used as food contain high amounts of polyamines. Knowledge of the content of polyamines in food as a source of these growth factors is therefore critical. A 2-step perchloric acid precipitation method to obtain acid soluble extracts from food that are subsequently taken through a dansylation process to produce dansyl polyamine derivatives for HPLC measurement is described. Examples are provided to illustrate mathematical correction factors

Key words

Polyamine Food Diet Dansylation Perchloric acid 

Notes

Acknowledgment

We thank Gary Cameron (IMS core facilities) for invaluable ­support with HPLC analysis.

References

  1. 1.
    Eliassen KA, Reistad R, Risøen U, Rønning HF (2002) Dietary polyamines. Food Chem 78:273–280CrossRefGoogle Scholar
  2. 2.
    Kalac P, Krausová P (2005) A review of dietary polyamines: formation, implications for growth and health and occurrence in foods. Food Chem 90:219–230CrossRefGoogle Scholar
  3. 3.
    Bardócz S, Grant G, Brown DS, Ralph A, Pusztai A (1993) Polyamines in food – implications for growth and health. J Nutr Biochem 4:66–71CrossRefGoogle Scholar
  4. 4.
    Milovic V (2001) Polyamines in the gut lumen: bioavailability and biodistribution. Eur J Gastroenterol Hepatol 13:1021–1025PubMedCrossRefGoogle Scholar
  5. 5.
    Okamoto A, Sugi E, Koizumi Y, Yanagida F, Udaka S (1997) Polyamine content of ordinary foodstuffs and various fermented foods. Biosci Biotechnol Biochem 61:1582–1584PubMedCrossRefGoogle Scholar
  6. 6.
    Bardocz S, Duguid TJ, Brown DS et al (1995) The importance of dietary polyamines in cell regeneration and growth. Br J Nutr 73:819–828PubMedCrossRefGoogle Scholar
  7. 7.
    Sawada Y, Pereira SP, Murphy GM, Dowling RH (1994) Origins of intestinal luminal polyamines in man. Gut 35:S20CrossRefGoogle Scholar
  8. 8.
    Bardocz S, Grant G, Brown DS, Ewen SW, Nevison I, Pusztai A (1990) Polyamine metabolism and uptake during Phaseolus vulgaris lectin, PHA-induced growth of rat small intestine. Digestion 46:360–366PubMedCrossRefGoogle Scholar
  9. 9.
    Bardocz S, Brown DS, Grant G, Pusztai A (1990) Luminal and basolateral polyamine uptake by rat small intestine stimulated to grow by Phaseolus vulgaris lectin phytohaemagglutinin in vivo. Biochim Biophys Acta 1034:46–52PubMedCrossRefGoogle Scholar
  10. 10.
    Holtta E (1977) Oxidation of spermidine and spermine in rat liver: purification and properties of polyamine oxidase. Biochemistry 16:91–100PubMedCrossRefGoogle Scholar
  11. 11.
    Seiler N, Bolkenius FN, Knodgen B, Mamont P (1980) Polyamine oxidase in rat tissues. Biochim Biophys Acta 615:480–488PubMedGoogle Scholar
  12. 12.
    Milovic V, Odera G, Murphy GM, Dowling RH (1997) Jejunal putrescine absorption and the ‘pharmacokinetics’/biotransformation of ingested putrescine in humans. Gut 41:A62Google Scholar
  13. 13.
    Teti D, Visalli M, McNair H (2002) Analysis of polyamines as markers of (patho) ­physiological conditions. J Chromatogr 781:107–149CrossRefGoogle Scholar
  14. 14.
    Seiler N (1977) Assay procedures for polyamines in urine, serum, and cerebrospinal fluid. Clin Chem 23:1519–1526PubMedGoogle Scholar
  15. 15.
    Marton LJ, Russell DH, Levy CC (1973) Measurement of putrescine, spermidine, and spermine in physiological fluids by use of an amino acid analyzer. Clin Chem 19:923–926PubMedGoogle Scholar
  16. 16.
    Russell DH, Russell SD (1975) Relative usefulness of measuring polyamines in serum, plasma, and urine as biochemical markers of cancer. Clin Chem 21:860–863PubMedGoogle Scholar
  17. 17.
    Kanda S, Takahashi M, Nagase S (1989) Fluorometric assay for polyamines in urine and tissues using electrophoresis on titan iii cellulose acetate. Anal Biochem 180:307–310PubMedCrossRefGoogle Scholar
  18. 18.
    Samejima K, Kawase M, Sakamoto S, Okada M, Endo Y (1976) A sensitive fluorometric method for the determination of aliphatic diamines and polyamines in biological materials by high-speed liquid chromatography. Anal Biochem 76:392–406PubMedCrossRefGoogle Scholar
  19. 19.
    Seiler N, Knödgen B (1980) High-performance liquid chromatographic procedure for the simultaneous determination of the natural polyamines and their monoacetyl derivatives. J Chromatogr 221:227–235PubMedCrossRefGoogle Scholar
  20. 20.
    Wang W, Kucuk O, Franke AA, Liu LQ, Custer LJ, Higuchi CM (1996) Reproducibility of erythrocyte polyamine measurements and correlation with plasma micronutrients in an antioxidant vitamin intervention study. J Cell Biochem 62:19–26PubMedCrossRefGoogle Scholar
  21. 21.
    Kotzabasis K, Christakishampsas MD, Roubelakisangelakis KA (1993) A narrow-bore HPLC method for the identification and quantitation of free, conjugated, and bound polyamines. Anal Biochem 214:484–489PubMedCrossRefGoogle Scholar
  22. 22.
    Seiler N (1983) Liquid chromatographic methods for assaying polyamines using prechromatographic derivatization. Methods Enzymol 94:10–25PubMedCrossRefGoogle Scholar
  23. 23.
    Kalac P, Krízek M, Pelikánová T, Langová M, Veskrna O (2005) Contents of polyamines in selected foods. Food Chem 90:561–564CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Paul Acheampong
    • 1
  • Mary J. Macleod
    • 1
  • Heather M. Wallace
    • 1
    Email author
  1. 1.Division of Applied MedicineUniversity of AberdeenAberdeenUK

Personalised recommendations