Polyamines pp 183-194 | Cite as

Characterization, Assay, and Substrate Specificity of Plant Polyamine Oxidases

  • Panagiotis N. Moschou
  • Kalliopi A. Roubelakis-AngelakisEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 720)


Polyamine oxidation is the main catabolic process of polyamines. This process is crucial because not only it participates in the regulation of the endogenous titers of polyamines but also it generates hydrogen peroxide, which can act as a signaling molecule. The recent identification of polyamine oxidases that differ in substrate specificity and mode of action in plants necessitates the use of additional techniques for their characterization based on the determination of the end-product. Herein, we describe the most widely used techniques as well as new techniques that can be used for analysis of the newly identified polyamine oxidases.

Key words

Diamine oxidases Polyamine oxidases Oxidation Polyamine back-conversion Interconversion Hydrogen peroxide Flavin adenine dinucleotide Peroxisomes 


  1. 1.
    Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381PubMedCrossRefGoogle Scholar
  2. 2.
    Schrader M, Fahimi DH (2004) Mammalian peroxisomes and reactive oxygen species. Histochem Cell Biol 122:383–393PubMedCrossRefGoogle Scholar
  3. 3.
    Rea G, de Pinto MC, Tavazza R, Biondi S, Gobbi V, Ferrante P, De Gara L, Federico R, Angelini R, Tavladoraki P (2004) Ectopic expression of maize polyamine oxidase and pea copper amine oxidase in the cell wall of tobacco plants. Plant Physiol 134:1414–1426PubMedCrossRefGoogle Scholar
  4. 4.
    Cona A, Rea G, Angelini R, Federico R, Tavladoraki P (2006) Functions of amine oxidases in plant development and defence. Trends Plant Sci 11:80–88PubMedCrossRefGoogle Scholar
  5. 5.
    Moschou PN, Sanmartin M, Andriopoulou AH, Rojo E, Sanchez-Serrano JJ, Roubelakis-Angelakis KA (2008) Bridging the gap between plant and mammalian polyamine catabolism: a novel peroxisomal polyamine oxidase responsible for a full back-conversion pathway in Arabidopsis. Plant Physiol 147:1845–1857PubMedCrossRefGoogle Scholar
  6. 6.
    Del Duca S, Beninati S, Serafini-Fracassini D (1995) Polyamines in chloroplasts: identification of their glutamyl and acetyl derivatives. Biochem J 305:233–237PubMedGoogle Scholar
  7. 7.
    Tassoni A, Van Buuren M, Franceschetti M, Fornale ÌS, Bagni N (2000) Polyamine content and metabolism in Arabidopsis thaliana and effect of spermidine on plant development. Plant Physiol Biochem 38:383–393CrossRefGoogle Scholar
  8. 8.
    Tavladoraki P, Rossi MN, Saccuti G, Perez-Amador MA, Polticelli F, Angelini R, Federico R (2006) Heterologous expression and biochemical characterization of a polyamine oxidase from Arabidopsis involved in polyamine back conversion. Plant Physiol 149:1519–1532CrossRefGoogle Scholar
  9. 9.
    Hammarstrom M, Hellgren N, Van der Berg S, Berglund H, Hard T (2002) Rapid screening for improved solubility of small human proteins produced as fusion proteins in Escherichia coli. Protein Sci 11:313–321PubMedCrossRefGoogle Scholar
  10. 10.
    Reumann S, Ma C, Lemke S, Babujee L (2004) AraPerox. A database of putative Arabidopsis proteins from plant peroxisomes. Plant Physiol 136:2587–2608PubMedCrossRefGoogle Scholar
  11. 11.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-Phenol reagents. J Biol Chem 193:265–275PubMedGoogle Scholar
  12. 12.
    Paschalidis KA, Roubelakis-Angelakis KA (2005) Sites and regulation of polyamine catabolism in the tobacco plant. Correlations with cell division/expansion, cell cycle progression, and vascular development. Plant Physiol 138:2174–2184PubMedCrossRefGoogle Scholar
  13. 13.
    Flores EH, Galston AW (1984) Osmotic stress-induced polyamine accumulation in cereal leaves: II. Relation to amino acid pools. Plant Physiol 75:110–113PubMedCrossRefGoogle Scholar
  14. 14.
    Biondi S, Scaramagli S, Capitani F, Maddalena M, Patrizia A, Torrigiani P (2001) Methyl jasmonate upregulates biosynthetic gene expression, oxidation and conjugation of polyamines, and inhibits shoot formation in tobacco thin layers. J Exp Bot 52:231–242PubMedCrossRefGoogle Scholar
  15. 15.
    Bhatnagar P, Glasheen BM, Bains SK, Long SL, Minocha R, Walter C, Minocha SC (2001) Transgenic manipulation of the metabolism of polyamines in poplar cells. Plant Physiol 125:2139–2153PubMedCrossRefGoogle Scholar
  16. 16.
    Scaramagli S, Biondi S, Torrigiani P (1999) Methylglyoxal (bis-guanylhydrazone) inhibition of organogenesis is not due to S-adenosylmethionine decarboxylase inhibition/polyamine depletion in tobacco thin layers. Physiol Plant 107:353–360CrossRefGoogle Scholar
  17. 17.
    Federico R, Angelini R (1988) Distribution of polyamines and their related catabolic enzymes in etiolated and light-grown Leguminosae seedlings. Planta 173:317–321CrossRefGoogle Scholar
  18. 18.
    Holmsted B, Larsson L, Tham R (1961) Further studies on spectophotometric method for the determination of amine oxidase activity. Biochim Biophys Acta 48:182–186CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Panagiotis N. Moschou
    • 1
  • Kalliopi A. Roubelakis-Angelakis
    • 1
    Email author
  1. 1.Department of BiologyUniversity of CreteHeraklionGreece

Personalised recommendations