Skip to main content

Targeting and Excitation of Photoactivatable Molecules: Design Considerations for Neurophysiology Experiments

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 55))

Abstract

Each chapter in this volume describes in detail the application of one or a group of photosensitive molecules to biological research. In this chapter, we take up general prefatory questions: how to determine which molecules are appropriate to use, and what type of compound delivery and light-targeting apparatus for photoactivation is likely to give satisfactory spatial and temporal performance. We enumerate the advantages and disadvantages of currently available “caged” and genetically encoded photosensitive molecules. We also compare current mature and emerging technologies for patterned light delivery, referring as much as possible to broadly applicable general principles. Our goal is to provide a comprehensive overview with signposts to more detailed treatments.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Walker JW, McCray JA, Hess GP (1986) Photolabile protecting groups for an acetylcholine receptor ligand. Synthesis and photochemistry of a new class of o-nitrobenzyl derivatives and their effects on receptor function. Biochemistry 25:1799–1805

    PubMed  CAS  Google Scholar 

  2. Milburn T, Matsubara N, Billington AP, Udgaonkar JB, Walker JW, Carpenter BK, Webb WW, Marque J, Denk W, McCray JA et al (1989) Synthesis, photochemistry, and biological activity of a caged photolabile acetylcholine receptor ligand. Biochemistry 28:49–55

    PubMed  CAS  Google Scholar 

  3. Wilcox M, Viola RW, Johnson KW, Billington AP, Carpenter BK, McCray JA, Guzikowski AP, Hess GP (1990) Synthesis of photo- labile precussors of amino acid neurotransmitters. J Org Chem 55:1585–1589

    PubMed  CAS  Google Scholar 

  4. Furuta T, Wang SS, Dantzker JL, Dore TM, Bybee WJ, Callaway EM, Denk W, Tsien RY (1999) Brominated 7-hydroxycoumarin-4-ylmethyls: photolabile protecting groups with biologically useful cross-sections for two photon photolysis. Proc Natl Acad Sci U S A 96:1193–1200

    PubMed  CAS  Google Scholar 

  5. Canepari M, Nelson L, Papageorgiou G, Corrie JET, Ogden D (2001) Photochemical and pharmacological evaluation of 7-nitroindolinyl-and 4-methoxy-7-nitroindolinyl-amino acids as novel, fast caged neurotransmitters. J Neurosci Methods 112:29–42

    PubMed  CAS  Google Scholar 

  6. Matsuzaki M, Ellis-Davies GCR, Nemoto T, Miyashita Y, Iino M, Kasai H (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4:1086–1092

    PubMed  CAS  Google Scholar 

  7. Papageorgiou G, Corrie JET (2000) Effects of aromatic substituents on the photocleavage of 1-acyl-7-nitroindolines. Tetrahedron 56:8197–8205

    CAS  Google Scholar 

  8. Gee KR, Niu L, Schaper K, Hess GP (1995) Caged bioactive carboxylates. Synthesis, photolysis studies, and biological characterization of a new caged N-methyl-d-aspartic acid. J Org Chem 60:4260–4263

    CAS  Google Scholar 

  9. Niu L, Gee KR, Schaper K, Hess GP (1996) Synthesis and photochemical properties of a kainate precursor and activation of kainate and AMPA receptor channels on a microsecond time scale. Biochemistry 35:2030–2036

    PubMed  CAS  Google Scholar 

  10. Huang YH, Muralidharan S, Sinha SR, Kao JP, Bergles DE (2005) Ncm-d-aspartate: a novel caged d-aspartate suitable for activation of glutamate transporters and N-methyl-d-aspartate (NMDA) receptors in brain tissue. Neuropharmacology 49:831–842

    PubMed  CAS  Google Scholar 

  11. Huang YH, Sinha SR, Fedoryak OD, Ellis-Davies GCR, Bergles DE (2005) Synthesis and characterization of 4-methoxy-7-nitroindolinyl-d-aspartate, a caged compound for selective activation of glutamate transporters and N-methyl-d-aspartate receptors in brain tissue. Biochemistry 44:3316–3326

    PubMed  CAS  Google Scholar 

  12. Ellis-Davies GCR (2007) Caged compounds: photorelease technology for control of cellular chemistry and physiology. Nat Methods 4:619–628

    PubMed  CAS  Google Scholar 

  13. Fino E, Araya R, Peterka DS, Salierno M, Etchenique R, Yuste R (2009) RuBi-Glutamate: two-photon and visible-light photoactivation of neurons and dendritic spines. Front Neural Circuits 3:2

    PubMed  Google Scholar 

  14. Gee KR, Wieboldt R, Hess GP (1994) Synthesis and photochemistry of a new photolabile derivative of GABA-neurotransmitter release and receptor activation in the microsecond time region. J Am Chem Soc 116:8366–8367

    CAS  Google Scholar 

  15. Cürten BC, Kullmann PHMK, Bier ME, Kandler KK, Schmidt BS (2005) Synthesis, photophysical, photochemical and biological properties of caged GABA, 4-[[(2H-1-Benzopyran-2-one-7-amino-4-methoxy) carbonyl] amino] butanoic acid. Photochem Photobiol 81:641–648

    PubMed  Google Scholar 

  16. Rial Verde EM, Zayat L, Etchenique R, Yuste R (2008) Photorelease of GABA with visible light using an inorganic caging group. Front Neural Circuits 2:2

    PubMed  Google Scholar 

  17. Trigo FF, Papageorgiou G, Corrie JE, Ogden D (2009) Laser photolysis of DPNI-GABA, a tool for investigating the properties and distribution of GABA receptors and for silencing neurons in situ. J Neurosci Methods 181(2):159–169

    PubMed  CAS  Google Scholar 

  18. Shembekar VR, Chen Y, Carpenter BK, Hess GP (2007) Coumarin-caged glycine that can be photolyzed within 3 microseconds by visible light. Biochemistry 46:5479–5484

    PubMed  CAS  Google Scholar 

  19. Roitman MF, Stuber GD, Phillips PE, Wightman RM, Carelli RM (2004) Dopamine operates as a subsecond modulator of food seeking. J Neurosci 24:1265–1271

    PubMed  CAS  Google Scholar 

  20. Sombers LA, Beyene M, Carelli RM, Wightman RM (2009) Synaptic overflow of dopamine in the nucleus accumbens arises from neuronal activity in the ventral tegmental area. J Neurosci 29:1735–1742

    PubMed  CAS  Google Scholar 

  21. Breitinger HG, Wieboldt R, Ramesh D, Carpenter BK, Hess GP (2000) Synthesis and characterization of photolabile derivatives of serotonin for chemical kinetic investigations of the serotonin 5-HT3 receptor. Biochemistry 39:5500–5508

    PubMed  CAS  Google Scholar 

  22. Muralidharan S, Nerbonne JM (1995) Photolabile “caged” adrenergic receptor agonists and related model compounds. J Photochem Photobiol B 27:123–137

    PubMed  CAS  Google Scholar 

  23. Lee TH, Gee KR, Ellinwood EH, Seidler FJ (1996) Combining “caged-dopamine” photolysis with fast-scan cyclic voltammetry to assess dopamine clearance and release autoinhibition in vitro. J Neurosci Methods 67:221–231

    PubMed  CAS  Google Scholar 

  24. Kao JP (2006) Caged molecules: principles and practical considerations. Curr Protoc Neurosci Chapter 6:Unit 6.20

    Google Scholar 

  25. Kuner T, Li Y, Gee KR, Bonewald LF, Augustine GJ (2008) Photolysis of a caged peptide reveals rapid action of N-ethylmaleimide sensitive factor before neurotransmitter release. Proc Natl Acad Sci USA 105:347–352

    PubMed  CAS  Google Scholar 

  26. Engels J, Schlaeger EJ (1977) Synthesis, structure, and reactivity of adenosine cyclic 3′,5′-phosphate benzyl triesters. J Med Chem 20:907–911

    PubMed  CAS  Google Scholar 

  27. Kaplan JH, Forbush B, Hoffman JF (1978) Rapid photolytic release of adenosine 5′-triphosphate from a protected analogue: utilization by the Na:K pump of human red blood cell ghosts. Biochemistry 17:1929–1935

    PubMed  CAS  Google Scholar 

  28. Walker JW, Somlyo AV, Goldman YE, Somlyo AP, Trentham DR (1987) Kinetics of smooth and skeletal muscle activation by laser pulse photolysis of caged inositol 1,4,5-trisphosphate. Nature 327:249–252

    PubMed  CAS  Google Scholar 

  29. Dantzig JA, Higuchi H, Goldman YE (1998) Studies of molecular motors using caged compounds. Meth Enzymol 291:307–348

    PubMed  CAS  Google Scholar 

  30. Bamberg E, Clarke RJ, Fendler K (2001) Electrogenic properties of the Na+, K+-ATPase probed by presteady state and relaxation studies. J Bioenerg Biomembr 33:401–405

    PubMed  CAS  Google Scholar 

  31. Adams SR, Tsien RY (1993) Controlling cell chemistry with caged compounds. Annu Rev Physiol 55:755–784

    PubMed  CAS  Google Scholar 

  32. Kaplan JH, Ellis-Davies GCR (1988) Photolabile chelators for the rapid photorelease of divalent cations. Proc Natl Acad Sci USA 85:6571–6575

    PubMed  CAS  Google Scholar 

  33. Ellis-Davies GCR, Kaplan JH (1994) Nitrophenyl-EGTA, a photolabile chelator that selectively binds Ca2+ with high affinity and releases it rapidly upon photolysis. Proc Natl Acad Sci USA 91:187–191

    PubMed  CAS  Google Scholar 

  34. Makings LR, Tsien RY (1994) Caged nitric oxide. Stable organic molecules from which nitric oxide can be photoreleased. J Biol Chem 269:6282–6285

    PubMed  CAS  Google Scholar 

  35. Ellis-Davies GCR (2008) Neurobiology with caged calcium. Chem Rev 108:1603–1613

    PubMed  CAS  Google Scholar 

  36. Adams SR, Kao JPY, Tsien RY (1988) Biologically useful chelators that take up calcium (2+) upon illumination. J Am Chem Soc 111:7957–7968

    Google Scholar 

  37. Khodakhah K, Armstrong CM (1997) Inositol trisphosphate and ryanodine receptors share a common functional Ca2+ pool in cerebellar Purkinje neurons. Biophys J 73:3349–3357

    PubMed  CAS  Google Scholar 

  38. Walker JW, Reid GP, Trentham DR (1989) Synthesis and properties of caged nucleotides. Meth Enzymol 172:288–301

    PubMed  CAS  Google Scholar 

  39. Sarkisov DV, Wang SS-H (2008) Order-dependent coincidence detection in cerebellar Purkinje neurons at the inositol trisphosphate receptor. J Neurosci 28(1):133–142

    PubMed  CAS  Google Scholar 

  40. Gee KR, Lee HC (1998) Characterization and application of photogeneration of calcium mobilizers cADP-ribose and nicotinic acid adenine dinucleotide phosphate from caged analogs. Meth Enzymol 291:403–415

    PubMed  CAS  Google Scholar 

  41. Shirokova N, Niggli E (2008) Studies of RyR function in situ. Methods 46:183–193

    PubMed  CAS  Google Scholar 

  42. Zhelyaskov VR, Godwin DW (1998) Photolytic generation of nitric oxide through a porous glass partitioning membrane. Nitric Oxide 2:454–459

    PubMed  CAS  Google Scholar 

  43. Furuta T, Takeuchi H, Isozaki M, Takahashi Y, Kanehara M, Sugimoto M, Watanabe T, Noguchi K, Dore TM, Kurahashi T, Iwamura M, Tsien RY (2004) Bhc-cNMPs as either water-soluble or membrane-permeant ­photoreleasable cyclic nucleotides for both one- and two-photon excitation. Chem­biochem 5:1119–1128

    PubMed  CAS  Google Scholar 

  44. Nerbonne JM (1996) Caged compounds: tools for illuminating neuronal responses and connections. Curr Opin Neurobiol 6:379–386

    PubMed  CAS  Google Scholar 

  45. Lester HA, Nerbonne JM (1982) Physiological and pharmacological manipulations with light flashes. Annu Rev Biophys Bioeng 11:151–175

    PubMed  CAS  Google Scholar 

  46. Gurney AM (1994) Flash photolysis of caged compounds. In: Ogden DA (ed) Microelectrode techniques. The Plymouth workshop handbook. The company of Biologists pp 389–406

    Google Scholar 

  47. Sarkisov DV, Wang SS-H (2007) Combining uncaging techniques with patch-clamp recording and optical physiology. In: Walzw (ed) Patch clamp analysis: advanced techniques, vol 38, 2nd edn. Humana Press pp 149–168

    Google Scholar 

  48. Kramer RH, Chambers JJ, Trauner D (2005) Photochemical tools for remote control of ion channels in excitable cells. Nat Chem Biol 1:360–365

    PubMed  CAS  Google Scholar 

  49. Szobota S, Gorostiza P, Del Bene F, Wyart C, Fortin DL, Kolstad KD, Tulyathan O, Volgraf M, Numano R, Aaron HL, Scott EK, Kramer RH, Flannery J, Baier H, Trauner D, Isacoff EY (2007) Remote control of neuronal activity with a light-gated glutamate receptor. Neuron 54:535–545

    PubMed  CAS  Google Scholar 

  50. Gorostiza P, Volgraf M, Numano R, Szobota S, Trauner D, Isacoff EY (2007) Mechanisms of photoswitch conjugation and light activation of an ionotropic glutamate receptor. Proc Natl Acad Sci USA 104:10865–10870

    PubMed  CAS  Google Scholar 

  51. Chambers JJ, Banghart MR, Trauner D, Kramer RH (2006) Light-induced depolarization of neurons using a modified shaker K+ channel and a molecular photoswitch. J Neurophysiol 96:2792–2796

    PubMed  CAS  Google Scholar 

  52. Banghart M, Borges K, Isacoff E, Trauner D, Kramer RH (2004) Light-activated ion channels for remote control of neuronal firing. Nat Neurosci 7:1381–1386

    PubMed  CAS  Google Scholar 

  53. Fortin DL, Banghart MR, Dunn TW, Borges K, Wagenaar DA, Gaudry Q, Karakossian MH, Otis TS, Kristan WB, Trauner D, Kramer RH (2008) Photochemical control of endogenous ion channels and cellular excitability. Nat Methods 5:331–338

    PubMed  CAS  Google Scholar 

  54. Chambers JJ, Kramer RH (2008) Light-activated ion channels for remote control of neural activity. Methods Cell Biol 90:217–232

    PubMed  CAS  Google Scholar 

  55. Knöpfel T (2008) Expanding the toolbox for remote control of neuronal circuits. Nat Methods 5:293–295

    PubMed  Google Scholar 

  56. Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective ­membrane channel. Proc Natl Acad Sci USA 100:13940–13945

    PubMed  CAS  Google Scholar 

  57. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    PubMed  CAS  Google Scholar 

  58. Zhang F, Wang LP, Boyden ES, Deisseroth K (2006) Channelrhodopsin-2 and optical control of excitable cells. Nat Methods 3:785–792

    PubMed  CAS  Google Scholar 

  59. Ernst OP, Sánchez Murcia PA, Daldrop P, Tsunoda SP, Kateriya S, Hegemann P (2008) Photoactivation of channelrhodopsin. J Biol Chem 283:1637–1643

    PubMed  CAS  Google Scholar 

  60. Nagel G, Brauner M, Liewald JF, Adeishvili N, Bamberg E, Gottschalk A (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15:2279–2284

    PubMed  CAS  Google Scholar 

  61. Bamann C, Kirsch T, Nagel G, Bamberg E (2008) Spectral characteristics of the photocycle of channelrhodopsin-2 and its implication for channel function. J Mol Biol 375:686–694

    PubMed  CAS  Google Scholar 

  62. Nikolic K, Grossman N, Grubb MS, Burrone J, Toumazou C, Degenaar P (2009) Photocycles of channelrhodopsin-2. Photo­chem Photobiol 85:400–411

    PubMed  CAS  Google Scholar 

  63. Lin JY, Lin MZ, Steinbach P, Tsien RY (2009) Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys J 96:1803–1814

    PubMed  CAS  Google Scholar 

  64. Berndt A, Yizhar O, Gunaydin LA, Hegemann P, Deisseroth K (2009) Bi-stable neural state switches. Nat Neurosci 12:229–234

    PubMed  CAS  Google Scholar 

  65. Zhang F, Prigge M, Beyrière F, Tsunoda SP, Mattis J, Yizhar O, Hegemann P, Deisseroth K (2008) Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat Neurosci 11:631–633

    PubMed  Google Scholar 

  66. Zhang YP, Oertner TG (2006) Optical induction of synaptic plasticity using a light-sensitive channel. Nat Methods 4:139–141

    PubMed  Google Scholar 

  67. Ishizuka T, Kakuda M, Araki R, Yawo H (2006) Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels. Neurosci Res 54:85–94

    PubMed  CAS  Google Scholar 

  68. Bormuth V, Howard J, Schaffer E (2007) LED illumination for video-enhanced DIC imaging of single microtubules. J Microsc 226:1–5

    PubMed  Google Scholar 

  69. Benavides JM, Webb RH (2005) Optical characterization of ultrabright LEDs. Appl Opt 44:4000–4003

    PubMed  Google Scholar 

  70. Lanyi JK (1990) Halorhodopsin, a light-driven electrogenic chloride-transport system. Physiol Rev 70(2):319–330

    PubMed  CAS  Google Scholar 

  71. Han X, Boyden ES (2007) Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS ONE 2(3):e299

    PubMed  Google Scholar 

  72. Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A, Deisseroth K (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633–639

    PubMed  CAS  Google Scholar 

  73. Zhang F, Aravanis AM, Adamantidis A, de Lecea L, Deisseroth K (2007) Circuit-breakers: optical technologies for probing neural signals and systems. Nat Rev Neurosci 8:577–581

    PubMed  CAS  Google Scholar 

  74. Gradinaru V, Thompson KR, Deisseroth K (2008) eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol 36:129–139

    PubMed  Google Scholar 

  75. Chow H, Qian XQ, Boyden ES (2009) High-performance halorhodopsin variants for improved genetically-targetable optical neural silencing. Frontiers in systems neuroscience. In: Conference abstract: computations and systems neuroscience

    Google Scholar 

  76. Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K (2009) Optical deconstruction of parkinsonian neural circuitry. Science 324:354–359

    PubMed  CAS  Google Scholar 

  77. Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459:698–702

    PubMed  CAS  Google Scholar 

  78. Sjulson L, Miesenböck G (2008) Photocontrol of neural activity: biophysical mechanisms and performance in vivo. Chem Rev 108(5):1588–1602

    PubMed  CAS  Google Scholar 

  79. Airan RD, Thompson KR, Fenno LE, Bernstein H, Deisseroth K (2009) Temporally precise in vivo control of intracellular signalling. Nature 458:1025–1029

    PubMed  CAS  Google Scholar 

  80. Tsien RY (1989) Fluorescent probes of cell signaling. Annu Rev Neurosci 12:227–253

    PubMed  CAS  Google Scholar 

  81. Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003) In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci USA 100:7319–7324

    PubMed  CAS  Google Scholar 

  82. Harvey CD, Svoboda K (2007) Locally dynamic synaptic learning rules in pyramidal neuron dendrites. Nature 450:1195–1202

    PubMed  CAS  Google Scholar 

  83. Nikolenko V, Poskanzer KE, Yuste R (2007) Two-photon photostimulation and imaging of neural circuits. Nat Methods 4:943–950

    PubMed  CAS  Google Scholar 

  84. Saito T (2006) In vivo electroporation in the embryonic mouse central nervous system. Nat Protoc 1:1552–1558

    PubMed  CAS  Google Scholar 

  85. Tabata H, Nakajima K (2008) Labeling embryonic mouse central nervous system cells by in utero electroporation. Dev Growth Differ 50:507–511

    PubMed  CAS  Google Scholar 

  86. Petreanu LP, Huber DH, Sobczyk AS, Svoboda KS (2007) Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat Neurosci 10:663–668

    PubMed  CAS  Google Scholar 

  87. Petreanu L, Mao T, Sternson SM, Svoboda K (2009) The subcellular organization of neocortical excitatory connections. Nature 457:1142–1145

    PubMed  CAS  Google Scholar 

  88. Cetin A, Komai S, Eliava M, Seeburg PH, Osten P (2006) Stereotaxic gene delivery in the rodent brain. Nat Protoc 1:3166–3173

    PubMed  CAS  Google Scholar 

  89. Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450:420–424

    PubMed  CAS  Google Scholar 

  90. Dittgen T, Nimmerjahn A, Komai S, Licznerski P, Waters J, Margrie TW, Helmchen F, Denk W, Brecht M, Osten P (2004) Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. Proc Natl Acad Sci USA 101:18206–18211

    PubMed  CAS  Google Scholar 

  91. Bartlett JS, Wilcher R, Samulski RJ (2000) Infectious entry pathway of adeno-associated virus and adeno-associated virus vectors. J Virol 74:2777–2785

    PubMed  CAS  Google Scholar 

  92. Wallace DJ, zum Alten Borgloh SM, Astori S, Yang Y, Bausen M, Kügler S, Palmer AE, Tsien RY, Sprengel R, Kerr JN, Denk W, Hasan MT (2008) Single-spike detection in vitro and in vivo with a genetic Ca(2+) sensor. Nat Methods 5:797–804

    PubMed  CAS  Google Scholar 

  93. Song CK, Enquist LW, Bartness TJ (2005) New developments in tracing neural circuits with herpesviruses. Virus Res 111:235–249

    PubMed  CAS  Google Scholar 

  94. Ekstrand MI, Enquist LW, Pomeranz LE (2008) The alpha-herpesviruses: molecular pathfinders in nervous system circuits. Trends Mol Med 14:134–140

    PubMed  CAS  Google Scholar 

  95. Lima SQ, Hromádka T, Znamenskiy PZ, Zador AM (2009) Photostimulation-assisted identification of neuronal populations (PINP): a new method of tagging neuronal populations for identification during in vivo electrophysiological recording. PLoS ONE 4(7):e6099

    PubMed  Google Scholar 

  96. Kuhlman SJ, Huang ZJ (2008) High-resolution labeling and functional manipulation of specific neuron types in mouse brain by Cre-activated viral gene expression. PLoS ONE 3:e2005

    PubMed  Google Scholar 

  97. Atasoy D, Aponte Y, Su HH, Sternson SM (2008) A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J Neurosci 28:7025–7030

    PubMed  CAS  Google Scholar 

  98. Tsai HC, Zhang F, Adamantidis A, Stuber GD, Bonci A, de Lecea L, Deisseroth K (2009) Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324:1080–1084

    PubMed  CAS  Google Scholar 

  99. Cardin JA, Carlén M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai LH, Moore CI (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459:663–667

    PubMed  CAS  Google Scholar 

  100. Schnütgen F, Doerflinger N, Calléja C, Wendling O, Chambon P, Ghyselinck NB (2003) A directional strategy for monitoring Cre-mediated recombination at the cellular level in the mouse. Nat Biotechnol 21:562–565

    PubMed  Google Scholar 

  101. Davidson BL, Breakefield XO (2003) Viral vectors for gene delivery to the nervous system. Nat Rev Neurosci 4:353–364

    PubMed  CAS  Google Scholar 

  102. Callaway EM (2008) Transneuronal circuit tracing with neurotropic viruses. Curr Opin Neurobiol 18:617–623

    PubMed  CAS  Google Scholar 

  103. Hogan BH, Constantini FC, Lacey EL (1994) Production of transgenic mice. In: Hogan B, Beddington R, Costantini F, Lacey E (eds) Manipulating the mouse embryo: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 217–252

    Google Scholar 

  104. Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, Nerbonne JM, Lichtman JW, Sanes JR (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28:41–51

    PubMed  CAS  Google Scholar 

  105. Sprengel R, Hasan MT (2007) Tetracycline-controlled genetic switches. Handb Exp Pharmacol 178:49–72

    PubMed  CAS  Google Scholar 

  106. Dymecki SM, Kim JC (2007) Molecular neuroanatomy’s “three Gs”: a primer. Neuron 54:17–34

    PubMed  CAS  Google Scholar 

  107. Luo L, Callaway EM, Svoboda K (2008) Genetic dissection of neural circuits. Neuron 57:634–660

    PubMed  CAS  Google Scholar 

  108. Arenkiel BR, Peca J, Davison IG, Feliciano C, Deisseroth K, Augustine GJ, Ehlers MD, Feng G (2007) In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54:205–218

    PubMed  CAS  Google Scholar 

  109. Liewald JF, Brauner M, Stephens GJ, Bouhours M, Schultheis C, Zhen M, Gottschalk A (2008) Optogenetic analysis of synaptic function. Nat Methods 5:895–902

    PubMed  CAS  Google Scholar 

  110. Shoham S, O’Connor DH, Sarkisov DV, Wang SS-H (2005) Rapid neurotransmitter uncaging in spatially defined patterns. Nat Methods 2:837–843

    PubMed  CAS  Google Scholar 

  111. Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21:1369–1377

    PubMed  CAS  Google Scholar 

  112. Ellis-Davies GCR (2000) Basics of photoactivation. Yuste R, Lanni F, Konnerth A (eds) In: Imaging neurons: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 24.1–24.8

    Google Scholar 

  113. Kandler K, Givens RS, Katz LC (2000) Photostimulation with caged glutamate. Yuste R, Lanni F, Konnerth A (eds) In: Imaging neurons: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 27.1–27.9

    Google Scholar 

  114. Bernardinelli Y, Haeberli C, Chatton JY (2005) Flash photolysis using a light emitting diode: an efficient, compact, and affordable solution. Cell Calcium 37:565–572

    PubMed  CAS  Google Scholar 

  115. Venkataramani S, Davitt KM, Xu H, Zhang J, Song YK, Connors BW, Nurmikko AV (2007) Semiconductor ultra-violet light-emitting diodes for flash photolysis. J Neurosci Methods 160:5–9

    PubMed  CAS  Google Scholar 

  116. Xu H, Zhang J, Davitt KM, Song Y, Nurmikko AV (2008) Application of blue-green and ultraviolet micro-LEDs to biological imaging and detection. J Phys D Appl Phys 41:94013

    Google Scholar 

  117. Pettit DL, Wang SS-H, Gee KR, Augustine GJ (1997) Chemical two-photon uncaging: a novel approach to mapping glutamate receptors. Neuron 19:465–471

    PubMed  CAS  Google Scholar 

  118. Sarkisov DV, Gelber SE, Walker JW, Wang SS-H (2007) Synapse specificity of calcium release probed by chemical two-photon uncaging of inositol 1,4,5-trisphosphate. J Biol Chem 282:25517–25526

    PubMed  CAS  Google Scholar 

  119. Wang SSH, Augustine GJ (1995) Confocal imaging and local photolysis of caged compounds: dual probes of synaptic function. Neuron 15:755–760

    PubMed  CAS  Google Scholar 

  120. Matsuzaki M, Ellis-Davies GCR, Kasai H (2008) Three-dimensional mapping of unitary synaptic connections by two-photon macro photolysis of caged glutamate. J Neurophysiol 99:1535–1544

    PubMed  CAS  Google Scholar 

  121. Göppert-Mayer M (1931) Über elementarakte mit zwei quantensprüngen. Ann Phys 9:273–294

    Google Scholar 

  122. Albota MA, Xu C, Webb WW (1998) Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm. Appl Opt 37:7352–7356

    PubMed  CAS  Google Scholar 

  123. Gasparini S, Magee JC (2006) State-dependent dendritic computation in hippocampal CA1 pyramidal neurons. J Neurosci 26:2088–2100

    PubMed  CAS  Google Scholar 

  124. Mohanty SK, Reinscheid RK, Liu X, Okamura N, Krasieva TB, Berns MW (2008) In-depth activation of ChR2 sensitized excitable cells with high spatial resolution using two-photon excitation with near-IR laser microbeam. Biophys J 95(8):3916–3926

    PubMed  CAS  Google Scholar 

  125. Rickgauer JP, Tank DW (2009) Two-photon excitation of channelrhodopsin-2 at saturation. Proc Natl Acad Sci USA 106:15025–15030

    Google Scholar 

  126. Tang CM (2006) Photolysis of caged neurotransmitters: theory and procedures for light delivery. Curr Protoc Neurosci Chapter 6:Unit 6.21

    Google Scholar 

  127. Callaway EM, Katz LC (1993) Photo­stimulation using caged glutamate reveals functional circuitry in living brain slices. Proc Natl Acad Sci USA 90:7661–7665

    PubMed  CAS  Google Scholar 

  128. Dalva MB, Katz LC (1994) Rearrangements of synaptic connections in visual cortex revealed by laser photostimulation. Science 265:255–258

    PubMed  CAS  Google Scholar 

  129. Dantzker JL, Callaway EM (2000) Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons. Nat Neurosci 3:701–707

    PubMed  CAS  Google Scholar 

  130. Shepherd GM, Stepanyants A, Bureau I, Chklovskii D, Svoboda K (2005) Geometric and functional organization of cortical circuits. Nat Neurosci 8:782–790

    PubMed  CAS  Google Scholar 

  131. Shepherd GM, Svoboda K (2005) Laminar and columnar organization of ascending excitatory projections to layer 2/3 pyramidal neurons in rat barrel cortex. J Neurosci 25:5670–5679

    PubMed  CAS  Google Scholar 

  132. Major G, Polsky A, Denk W, Schiller J, Tank DW (2008) Spatiotemporally graded NMDA spike/plateau potentials in basal dendrites of neocortical pyramidal neurons. J Neuro­physiol 99:2584–2601

    PubMed  CAS  Google Scholar 

  133. Bliton AC, Lechleiter JD (1995) Optical considerations at ultraviolet wavelengths in confocal microscopy. In: Pawley JBY (ed) Handbook of biological confocal microscopy, 2nd edn. Plenum, New York, pp 431–444

    Google Scholar 

  134. Denk W, Delaney KR, Gelperin A, Kleinfeld D, Strowbridge BW, Tank DW, Yuste R (1994) Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy. J Neurosci Methods 54:151–162

    PubMed  CAS  Google Scholar 

  135. Tsai PS, Nishimura N, Yoder EJ, White A, Dolnick E, Kleinfeld D (2002) Principles, design and construction of a two photon scanning microscope for in vitro and in vivo studies. In: Frostig R (ed) Methods for in vivo optical imaging. CRC Press pp 113–171

    Google Scholar 

  136. Gasparini S, Losonczy A, Chen X, Johnston D, Magee JC (2007) Associative pairing enhances action potential back-propagation in radial oblique branches of CA1 pyramidal neurons. J Physiol 580:787–800

    PubMed  CAS  Google Scholar 

  137. Lörincz A, Rózsa B, Katona G, Vizi ES, Tamás G (2007) Differential distribution of NCX1 contributes to spine-dendrite compartmentalization in CA1 pyramidal cells. Proc Natl Acad Sci USA 104:1033–1038

    PubMed  Google Scholar 

  138. Lillis KP, Eng A, White JA, Mertz J (2008) Two-photon imaging of spatially extended neuronal network dynamics with high temporal resolution. J Neurosci Methods 172:178–184

    PubMed  Google Scholar 

  139. Göbel W, Kampa BM, Helmchen F (2006) Imaging cellular network dynamics in three dimensions using fast 3D laser scanning. Nat Methods 4:73–79

    PubMed  Google Scholar 

  140. Bullen A, Patel SS, Saggau P (1997) High-speed, random-access fluorescence microscopy I. High-resolution optical recording with voltage-sensitive dyes and ion indicators. Biophys J 73(1):477–491

    PubMed  CAS  Google Scholar 

  141. Kremer Y, Léger JF, Lapole R, Honnorat N, Candela Y, Dieudonné S, Bourdieu L (2008) A spatio-temporally compensated acousto-optic scanner for two-photon microscopy providing large field of view. Opt Express 16:10066–10076

    PubMed  CAS  Google Scholar 

  142. Reddy G, Kelleher K, Fink R, Saggau P (2008) Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity. Nat Neurosci 11:713–720

    Google Scholar 

  143. Oheim M, Beaurepaire E, Chaigneau E, Mertz J, Charpak S (2001) Two-photon microscopy in brain tissue: parameters influencing the imaging depth. J Neurosci Methods 111:29–37

    PubMed  CAS  Google Scholar 

  144. Gerchberg RW, Saxton WO (1972) A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik 35:237–246

    Google Scholar 

  145. Lutz C, Otis TS, Desars V, Charpak S, Digregorio DA, Emiliani V (2008) Holographic photolysis of caged neurotransmitters. Nat Methods 5(9):821–827

    PubMed  CAS  Google Scholar 

  146. Nikolenko V, Watson BO, Araya R, Woodruff A, Peterka DS, Yuste R (2008) SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators. Front Neural Circuits 2:5

    PubMed  Google Scholar 

  147. Pologruto TA, Sabatini BL, Svoboda K (2003) ScanImage: flexible software for operating laser-scanning microscopes. Biomed Eng Online 2:13

    PubMed  Google Scholar 

  148. Hoogland TM, Kuhn B, Göbel W, Huang W, Nakai J, Helmchen F, Flint J, Wang SS (2009) Radially expanding transglial calcium waves in the intact cerebellum. Proc Natl Acad Sci USA 106:3496–3501

    PubMed  CAS  Google Scholar 

  149. Iyer V, Losavio BE, Saggau P (2003) Compensation of spatial and temporal dispersion for acousto-optic multiphoton laser-scanning microscopy. J Biomed Opt 8:460

    PubMed  Google Scholar 

  150. Salomé R, Kremer Y, Dieudonné S, Léger JF, Krichevsky O, Wyart C, Chatenay D, Bourdieu L (2006) Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors. J Neurosci Methods 154:161–174

    PubMed  Google Scholar 

  151. Zeng S, Lv X, Zhan C, Chen WR, Xiong W, Jacques SL, Luo Q (2006) Simultaneous compensation for spatial and temporal dispersion of acousto-optical deflectors for two-dimensional scanning with a single prism. Opt Lett 31:1091–1093

    PubMed  Google Scholar 

  152. Friedman N, Kaplan A, Davidson N (2000) Acousto-optic scanning system with very fast nonlinear scans. Opt Lett 25:1762–1764

    PubMed  CAS  Google Scholar 

  153. Reddy GD, Saggau P (2005) Fast three-dimensional laser scanning scheme using acousto-optic deflectors. J Biomed Opt 10(6):064038

    PubMed  Google Scholar 

  154. Chang IC, Assoc A, Santa Clara CA (1994) Acousto-optic modulator with wide bandwidth and large angular aperture. Electron Lett 30:1190–1191

    Google Scholar 

  155. Vučinić D, Sejnowski TJ (2007) A compact multiphoton 3D imaging system for recording fast neuronal activity. PLoS ONE 2:8

    Google Scholar 

  156. Oron D, Silberberg Y (2005) Spatio­temporal coherent control using shaped, temporally focused pulses. Opt Express 13:9903–9908

    PubMed  Google Scholar 

  157. Papagiakoumou E, de Sars V, Oron D, Emiliani V (2008) Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses. Opt Express 16:22039–22047

    PubMed  CAS  Google Scholar 

  158. Oku H, Hashimoto K, Ishikawa M (2004) Variable-focus lens with 1-kHz bandwidth. Opt Express 12:2138–2149

    PubMed  Google Scholar 

  159. Zhu L, Sun PC, Fainman Y (1999) Aberration-free dynamic focusing with a multichannel micromachined membrane deformable mirror. Appl Opt 38:5350–5354

    PubMed  CAS  Google Scholar 

  160. Amir W, Carriles R, Hoover EE, Planchon TA, Durfee CG, Squier JA (2007) Simultaneous imaging of multiple focal planes using a two-photon scanning microscope. Opt Lett 32:1731–1733

    PubMed  CAS  Google Scholar 

  161. Rózsa B, Katona G, Vizi ES, Várallyay Z, Sághy A, Valenta L, Maák P, Fekete J, Bányász A, Szipocs R (2007) Random access three-dimensional two-photon microscopy. Appl Opt 46:1860–1865

    PubMed  Google Scholar 

  162. Keller M, Kao JPY, Egger M, Niggli E, (2007) Calcium waves driven by “sensitization” wavefronts. Cardiovase Res 74:39–45

    Google Scholar 

  163. Kirleby PA, Naga Srinivas NKM, Silver RA (2010) A compact acousto-optic lens for 2D and 3D fentosecond based 2-photon micro­scopy. Opt Express 18:13721–13745

    Google Scholar 

Download references

Acknowledgments

We thank Karl Deisseroth, Valentina Emiliani, Jonathan A.N. Fisher, Mark McDonald, Ashlan Reid, Angus Silver, Cha-Min Tang, Stephan Thiberge, and Dejan Vučinić for helpful discussions and comments on this chapter.

E.F.C. is supported by a Robert Leet and Clara Guthrie Patterson Postdoctoral Fellowship in Brain Circuitry. J.P.R. is supported by a National Science Foundation Graduate Research fellowship. S.S.-H.W. is a W.M. Keck Foundation Distinguished Young Investigator and is supported by National Institutes of Health grant NS045193 and the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Peter Rickgauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Civillico, E.F., Rickgauer, J.P., Wang, S.SH. (2011). Targeting and Excitation of Photoactivatable Molecules: Design Considerations for Neurophysiology Experiments. In: Chambers, J., Kramer, R. (eds) Photosensitive Molecules for Controlling Biological Function. Neuromethods, vol 55. Humana Press. https://doi.org/10.1007/978-1-61779-031-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-031-7_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-030-0

  • Online ISBN: 978-1-61779-031-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics