Skip to main content

Photoswitchable Ligand-Gated Ion Channels

  • Protocol
  • First Online:
  • 819 Accesses

Part of the book series: Neuromethods ((NM,volume 55))

Abstract

Ligand-activated proteins can be controlled with light by means of synthetic photoisomerizable tethered ligands (PTLs). The application of PTLs to ligand-gated ion channels, including the nicotinic acetylcholine receptor and ionotropic glutamate receptors, is reviewed with emphasis on rational photoswitch design and the mechanisms of optical switching. Recently reported molecular dynamic methods allow simulation with high reliability of novel PTLs for any ligand-activated protein whose structure is known.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gorostiza P, Isacoff EY (2008) Optical switches for remote and noninvasive control of cell signaling. Science 322(5900):395–399

    Article  PubMed  CAS  Google Scholar 

  2. Rau H (1990) Azo compounds. In: Dürr H, Bouas-Laurent H (eds) Photochromism: molecules and systems. Elsevier, Amsterdam, pp 165–192

    Google Scholar 

  3. Rau H (1990) Photoisomerization of azobenzenes. In: Rabek JF (ed) Photochemistry and photophysics. CRC Press, Boca Raton, FL, pp 119–142

    Google Scholar 

  4. Gorostiza P, Isacoff E (2007) Optical switches and triggers for the manipulation of ion channels and pores. Mol Biosyst 3(10):686–704

    Article  PubMed  CAS  Google Scholar 

  5. Bartels E, Wassermann NH, Erlanger BF (1971) Photochromic activators of the acetylcholine receptor. Proc Natl Acad Sci U S A 68(8):1820–1823

    Article  PubMed  CAS  Google Scholar 

  6. Volgraf M, Gorostiza P, Numano R, Kramer RH, Isacoff EY, Trauner D (2006) Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat Chem Biol 2(1):47–52

    Article  PubMed  CAS  Google Scholar 

  7. Harvey JH, Trauner D (2008) Regulating enzymatic activity with a photoswitchable affinity label. Chembiochem 9(2):191–193

    Article  PubMed  CAS  Google Scholar 

  8. Karlin A (2002) Emerging structure of the nicotinic acetylcholine receptors. Nat Rev Neurosci 3(2):102–114

    Article  PubMed  CAS  Google Scholar 

  9. Lester HA, Dibas MI, Dahan DS, Leite JF, Dougherty DA (2004) Cys-loop receptors: new twists and turns. Trends Neurosci 27(6):329–336

    Article  PubMed  CAS  Google Scholar 

  10. Miyazawa A, Fujiyoshi Y, Unwin N (2003) Structure and gating mechanism of the acetylcholine receptor pore. Nature 423(6943):949–955

    Article  PubMed  CAS  Google Scholar 

  11. Unwin N (2005) Refined structure of the nicotinic acetylcholine receptor at 4  Å resolution. J Mol Biol 346(4):967–989

    Article  PubMed  CAS  Google Scholar 

  12. Smit AB, Brejc K, Syed N, Sixma TK (2003) Structure and function of AChBP, homologue of the ligand-binding domain of the nicotinic acetylcholine receptor. Ann N Y Acad Sci 998:81–92

    Article  PubMed  CAS  Google Scholar 

  13. Hilf RJ, Dutzler R (2008) X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature 452(7185):375–379

    Article  PubMed  CAS  Google Scholar 

  14. Hilf RJ, Dutzler R (2009) Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel. Nature 457(7225):115–118

    Article  PubMed  CAS  Google Scholar 

  15. Karlin A, Winnik M (1968) Reduction and specific alkylation of the receptor for acetylcholine. Proc Natl Acad Sci U S A 60(2):668–674

    Article  PubMed  CAS  Google Scholar 

  16. Silman I, Karlin A (1969) Acetylcholine receptor: covalent attachment of depolarizing groups at the active site. Science 164(886):1420–1421

    Article  PubMed  CAS  Google Scholar 

  17. Chabala LD, Lester HA (1986) Activation of acetylcholine receptor channels by covalently bound agonists in cultured rat myoballs. J Physiol 379:83–108

    PubMed  CAS  Google Scholar 

  18. Lester HA, Krouse ME, Nass MM, Wassermann NH, Erlanger BF (1980) A covalently bound photoisomerizable agonist: comparison with reversibly bound agonists at Electrophorus electroplaques. J Gen Physiol 75(2):207–232

    Article  PubMed  CAS  Google Scholar 

  19. Lester HA, Nass MM, Krouse ME, Nerbonne JM, Wassermann NH, Erlanger BF (1980) Electrophysiological experiments with photoisomerizable cholinergic compounds: review and progress report. Ann N Y Acad Sci 346:475–490

    Article  PubMed  CAS  Google Scholar 

  20. Kao PN, Dwork AJ, Kaldany RR et al (1984) Identification of the alpha subunit half-cystine specifically labeled by an affinity reagent for the acetylcholine receptor binding site. J Biol Chem 259(19):11662–11665

    PubMed  CAS  Google Scholar 

  21. Kao PN, Karlin A (1986) Acetylcholine receptor binding site contains a disulfide cross-link between adjacent half-cystinyl residues. J Biol Chem 261(18):8085–8088

    PubMed  CAS  Google Scholar 

  22. Placzek AN, Grassi F, Meyer EM, Papke RL (2005) An alpha7 nicotinic acetylcholine receptor gain-of-function mutant that retains pharmacological fidelity. Mol Pharmacol 68(6):1863–1876

    PubMed  CAS  Google Scholar 

  23. Mayer ML (2005) Glutamate receptor ion channels. Curr Opin Neurobiol 15(3):282–288

    Article  PubMed  CAS  Google Scholar 

  24. Armstrong N, Sun Y, Chen GQ, Gouaux E (1998) Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature 395(6705):913–917

    Article  PubMed  CAS  Google Scholar 

  25. Mayer ML (2005) Crystal structures of the GluR5 and GluR6 ligand binding cores: molecular mechanisms underlying kainate receptor selectivity. Neuron 45(4):539–552

    Article  PubMed  CAS  Google Scholar 

  26. Furukawa H, Gouaux E (2003) Mechanisms of activation, inhibition and specificity: crystal structures of the NMDA receptor NR1 ligand-binding core. EMBO J 22(12):2873–2885

    Article  PubMed  CAS  Google Scholar 

  27. Furukawa H, Singh SK, Mancusso R, Gouaux E (2005) Subunit arrangement and function in NMDA receptors. Nature 438(7065):185–192

    Article  PubMed  CAS  Google Scholar 

  28. Armstrong N, Gouaux E (2000) Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand binding core. Neuron 28(1):165–181

    Article  PubMed  CAS  Google Scholar 

  29. Sun Y, Olson R, Horning M, Armstrong N, Mayer M, Gouaux E (2002) Mechanism of glutamate receptor desensitization. Nature 417(6886):245–253

    Article  PubMed  CAS  Google Scholar 

  30. Jin R, Banke TG, Mayer ML, Traynelis SF, Gouaux E (2003) Structural basis for partial agonist action at ionotropic glutamate receptors. Nat Neurosci 6(8):803–810

    Article  PubMed  CAS  Google Scholar 

  31. Tomita S, Adesnik H, Sekiguchi M et al (2005) Stargazin modulates AMPA receptor gating and trafficking by distinct domains. Nature 435(7045):1052–1058

    Article  PubMed  CAS  Google Scholar 

  32. Zhang W, St-Gelais F, Grabner CP et al (2009) A transmembrane accessory subunit that modulates kainate-type glutamate receptors. Neuron 61(3):385–396

    Article  PubMed  CAS  Google Scholar 

  33. Schwenk J, Harmel N, Zolles G et al (2009) Functional proteomics identify cornichon proteins as auxiliary subunits of AMPA receptors. Science 323(5919):1313–1319

    Article  PubMed  CAS  Google Scholar 

  34. Dorman G, Prestwich GD (2000) Using photolabile ligands in drug discovery and development. Trends Biotechnol 18(2):64–77

    Article  PubMed  CAS  Google Scholar 

  35. Pedregal C, Collado I, Escribano A et al (2000) 4-Alkyl- and 4-cinnamylglutamic acid analogues are potent GluR5 kainate receptor agonists. J Med Chem 43(10):1958–1968

    Article  PubMed  CAS  Google Scholar 

  36. Gorostiza P, Volgraf M, Numano R, Szobota S, Trauner D, Isacoff E (2007) Mechanisms of photoswitch conjugation and light activation of an ionotropic glutamate receptor. Proc Natl Acad Sci U S A 104(26):10865–10870

    Article  PubMed  CAS  Google Scholar 

  37. Numano R, Szobota S, Lau AY et al (2009) Nanosculpting a Yin/Yang photoswitch for an ionotropic glutamate receptor. Proc Natl Acad Sci U S A 106(16):6814–6819

    Article  PubMed  CAS  Google Scholar 

  38. Mayer ML, Olson R, Gouaux E (2001) Mechanisms for ligand binding to GluR0 ion channels: crystal structures of the glutamate and serine complexes and a closed apo state. J Mol Biol 311(4):815–836

    Article  PubMed  CAS  Google Scholar 

  39. Numano R, Szobota S, Lau AY, Gorostiza P, Volgraf M, Roux B, Trauner D, Isacoff EY (2009) Nanosculpting reversed wavelength sensitivity into a photoswitchable iGluR. Proc Natl Acad Sci U S A 106(16):6814–6819

    Google Scholar 

  40. Szobota S, Gorostiza P, Del Bene F et al (2007) Remote control of neuronal activity with a light-gated glutamate receptor. Neuron 54(4):535–545

    Article  PubMed  CAS  Google Scholar 

  41. Wang S, Szobota S, Wang Y et al (2007) All optical interface for parallel, remote, and spatiotemporal control of neuronal activity. Nano Lett 7(12):3859–3863

    Article  PubMed  CAS  Google Scholar 

  42. Banghart M, Borges K, Isacoff E, Trauner D, Kramer RH (2004) Light-activated ion channels for remote control of neuronal firing. Nat Neurosci 7(12):1381–1386

    Article  PubMed  CAS  Google Scholar 

  43. Colquhoun D, Dreyer F, Sheridan RE (1979) The actions of tubocurarine at the frog neuromuscular junction. J Physiol 293:247–284

    PubMed  CAS  Google Scholar 

  44. Lau AY, Roux B (2007) The free energy landscapes governing conformational changes in a glutamate receptor ligand-binding domain. Structure 15(10):1203–1214

    Article  PubMed  CAS  Google Scholar 

  45. Celie PH, van Rossum-Fikkert SE, van Dijk WJ, Brejc K, Smit AB, Sixma TK (2004) Nicotine and carbamylcholine binding to ­nicotinic acetylcholine receptors as studied in AChBP crystal structures. Neuron 41(6):907–914

    Article  PubMed  CAS  Google Scholar 

  46. Damle VN, Karlin A (1978) Affinity labeling of one of two alpha-neurotoxin binding sites in acetylcholine receptor from Torpedo californica. Biochemistry 17(11):2039–2045

    Article  PubMed  CAS  Google Scholar 

  47. Damle VN, McLaughlin M, Karlin A (1978) Bromoacetylcholine as an affinity label of the acetylcholine receptor from Torpedo californica. Biochem Biophys Res Commun 84(4):845–851

    Article  PubMed  CAS  Google Scholar 

  48. Zhang F, Prigge M, Beyriere F et al (2008) Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat Neurosci 11(6):631–633

    Article  PubMed  Google Scholar 

  49. Berndt A, Yizhar O, Gunaydin LA, Hegemann P, Deisseroth K (2009) Bi-stable neural state switches. Nat Neurosci 12(2):229–234

    Article  PubMed  CAS  Google Scholar 

  50. Volgraf et al Unpublished

    Google Scholar 

  51. Burns DC, Zhang F, Woolley GA (2007) Synthesis of 3,3′-bis(sulfonato)-4,4′-bis(chloroacetamido)azobenzene and cysteine cross-linking for photo-control of protein conformation and activity. Nat Protoc 2(2):251–258

    Article  PubMed  CAS  Google Scholar 

  52. Sadovski O, Beharry AA, Zhang F, Woolley GA (2009) Spectral tuning of azobenzene photoswitches for biological applications. Angew Chem Int Ed Engl 48(8):1484–1486

    Article  PubMed  CAS  Google Scholar 

  53. Chi L, Sadovski O, Woolley GA (2006) A blue-green absorbing cross-linker for rapid photoswitching of peptide helix content. Bioconjug Chem 17(3):670–676

    Article  PubMed  CAS  Google Scholar 

  54. Beharry AA, Sadovski O, Woolley GA (2008) Photo-control of peptide confor­mation on a timescale of seconds with a conformationally constrained, blue-absorbing, photo-switchable linker. Org Biomol Chem 6(23):4323–4332

    Article  PubMed  CAS  Google Scholar 

  55. Pozhidaeva N, Cormier ME, Chaudhari A, Woolley GA (2004) Reversible photocontrol of peptide helix content: adjusting thermal stability of the cis state. Bioconjug Chem 15(6):1297–1303

    Article  PubMed  CAS  Google Scholar 

  56. Koçer A, Walko M, Meijberg W, Feringa BL (2005) A light-actuated nanovalve derived from a channel protein. Science 309(5735):755–758

    Article  PubMed  Google Scholar 

  57. Lougheed T, Borisenko V, Hennig T, Ruck-Braun K, Woolley GA (2004) Photomodulation of ionic current through hemithioindigo-modified gramicidin channels. Org Biomol Chem 2(19):2798–2801

    Article  PubMed  CAS  Google Scholar 

  58. Erdelyi M, Karlen A, Gogoll A (2005) A new tool in peptide engineering: a photoswitchable stilbene-type beta-hairpin mimetic. Chemistry 12(2):403–412

    PubMed  CAS  Google Scholar 

  59. Fortin DL, Banghart MR, Dunn TW et al (2008) Photochemical control of endogenous ion channels and cellular excitability. Nat Methods 5(4):331–338

    PubMed  CAS  Google Scholar 

  60. Heginbotham L, MacKinnon R (1992) The aromatic binding site for tetraethylammonium ion on potassium channels. Neuron 8(3):483–491

    Article  PubMed  CAS  Google Scholar 

  61. MacKinnon R, Yellen G (1990) Mutations affecting TEA blockade and ion permeation in voltage-activated K+ channels. Science 250(4978):276–279

    Article  PubMed  CAS  Google Scholar 

  62. Gorostiza P, Isacoff EY (2008) Nano­engineering ion channels for optical control. Physiology (Bethesda) 23:238–247

    Article  Google Scholar 

  63. Sobolevsky AI, Rosconi MP, Gouaux E (2009). Nature 462(7274):745–756

    Article  PubMed  CAS  Google Scholar 

  64. Janovjak H, Szobota S, Wyart C, Trauner D, Isacoff EY (2010). Nature Neuroscience 13:1027–1032

    Article  PubMed  CAS  Google Scholar 

  65. Banghart MR, Mourot A, Fortin DL, Yao JZ, Kramer RH, Trauner D (2009). Angew. Chem. Int. Ed. 48:9097–9101

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

P.G. is supported by the Human Frontier Science Program (HFSP) through a Career Development Award, by the European Research Council (ERC) through a Starting Grant, by the FET-ICT programme of the European Commission and by the Ministry of Science and Innovation (Spain). This work was supported by the NIH Nanomedicine Development Center for the Optical Control of Biological Function (5PN2EY018241) and by Human Frontier Science Program Grant RPG23-2005. The authors are grateful to H. Lester for providing useful references and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehud Y. Isacoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Gorostiza, P., Isacoff, E.Y. (2011). Photoswitchable Ligand-Gated Ion Channels. In: Chambers, J., Kramer, R. (eds) Photosensitive Molecules for Controlling Biological Function. Neuromethods, vol 55. Humana Press. https://doi.org/10.1007/978-1-61779-031-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-031-7_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-030-0

  • Online ISBN: 978-1-61779-031-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics