Skip to main content

Omics-Based Identification of Pathophysiological Processes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 719))

Abstract

Owing to the growing knowledge about the cellular molecular network and its alterations in diseases, most of the diseases become considered as “systems distortion of the cellular molecular network”. This view of diseases, which we call “systems pathology”, has brought about a new usage of the disease Omics, that is, to identify the altered molecular network underlying the disease. In this chapter, we discuss the technologies and clinical applications for Omics-based identification of pathophysiological process. In doing so, we classify the methods into two classes: one is a “data-inductive approach” which infers gene regulatory and transcriptional networks by gene expression data from DNA microarrays, and the other is a “knowledge-referenced approach” which combines the differentially expressed genes from gene expression profiles with existing protein interaction networks or literature-curated pathways. Several typical methods such as ARACNe and eQTL are described with their recent clinical applications.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Schena M, Shalon D, Davis RW, and Brown PO. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–70.

    Article  PubMed  CAS  Google Scholar 

  2. Fodor SP, Rava RP, Huang XC, Pease AC, Holmes CP, and Adams CL. (1993) Multiplexed biochemical assays with biological chips. Nature 364, 555–6.

    Article  PubMed  CAS  Google Scholar 

  3. Xing Y, Kapur K, and Wong WH. (2006) Probe selection and expression index computation of Affymetrix Exon Arrays. PLoS ONE 1, e88.

    Article  PubMed  Google Scholar 

  4. Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, and Yoshida T. (1988) Protein and polymer analyses up to m/z 100000 by laser ionization time-of flight mass spectrometry. Rapid Commun Mass Spectrom 2, 151–3.

    Article  CAS  Google Scholar 

  5. Hutchens TW, and Yip TT. (1993) New desorption strategies for the mass spectrometric analysis of macromolecules. Rapid Commun Mass Spectrom 7, 576–80.

    Article  CAS  Google Scholar 

  6. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, and Lander ES. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–7.

    Article  PubMed  CAS  Google Scholar 

  7. Sørlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, Demeter J, Perou CM, Lønning PE, Brown PO, Børresen-Dale AL, and Botstein D. (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100, 8418–23.

    Article  PubMed  Google Scholar 

  8. Tanaka H. (2010) Omics-based medicine and systems pathology Meth Informat Med 49, 173–185.

    CAS  Google Scholar 

  9. Liang S, Fuhrman S, and Somogyi R. (1998) Reveal, a general reverse engineering ­algorithm for inference of genetic network architectures. Pac Symp Biocomput 3, 18–29.

    Google Scholar 

  10. Friedman N, Linial M, Nachman I, and Pe’er D. (2000) Using Bayesian networks to analyze expression data. J Comput Biol 7, 601–20.

    Article  PubMed  CAS  Google Scholar 

  11. Gardner TS, di Bernardo D, Lorenz D, and Collins JJ. (2003) Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301, 102–5.

    Article  PubMed  CAS  Google Scholar 

  12. Edwards DG. (2000) Introduction to Graphical Modelling. Springer Verlag, Heidelberg.

    Google Scholar 

  13. Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, and Califano A. (2005) Reverse engineering of regulatory networks in human B cells. Nat Genet 37, 382–90.

    Article  PubMed  CAS  Google Scholar 

  14. Cooper GF, and Herskovits E. (1992) A Bayesian method for the induction of probabilistic networks from data. Mach Learn 9, 309–47.

    Google Scholar 

  15. Huang DW, Sherman BT, and Lempicki RA. (2009) Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nat Protoc 4, 44–57.

    Article  CAS  Google Scholar 

  16. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, and Mesirov JP. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression ­profiles. Proc Natl Acad Sci USA 102, 15545–50.

    Article  PubMed  CAS  Google Scholar 

  17. Ota MS, Kaneko Y, Kondo K, Ogishima S, Tanaka H, Eto K, and Kondo T. (2009) Combined in silico and in vivo analyses reveal role of Hes1 in taste cell differentiation. PLoS Genet 5, e1000443.

    Article  PubMed  Google Scholar 

  18. Ishiwata RR, Morioka MS, Ogishima S, and Tanaka H. (2009) BioCichlid: central dogma-based 3D visualization system of time-course microarray data on a ­hierarchical biological network. Bioinformatics 25, 543–4.

    Article  PubMed  CAS  Google Scholar 

  19. Gilad Y, Rifkin SA, and Pritchar JK. (2003) Revealing the architecture of gene regulation: the promise of eQTL studies. Cell 114, 323–32.

    Article  Google Scholar 

  20. Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R, and Califano A. (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7, S7.

    Article  PubMed  Google Scholar 

  21. Chuang HY, Lee E, Liu YT, Lee D, and Ideker T. (2007) Network-based classification of breast cancer metastasis. Mol Sys Biol 3, 140.

    Google Scholar 

  22. Tanaka S, Mogushi K, Yasen M, Noguchi N, Kudo A, Kurokawa T, Nakamura N, Inazawa J, Tanaka H, and Arii S. (2009) Surgical contribution to recurrence-free survival in patients with macrovascular-invasion-negative hepatocellular carcinoma. J Am Coll Surg 208, 368–74.

    Article  PubMed  Google Scholar 

  23. Lamb J, Ramaswamy S, Ford HL, Contreras B, Martinez RV, Kittrell FS, Zahnow CA, Patterson N, Golub TR, and Ewen ME. (2003) A mechanism of cyclin D1 action encoded in the patterns of gene expression in human cancer. Cell 114, 323–34.

    Article  PubMed  CAS  Google Scholar 

  24. Goring HH, Curran JE, Johnson MP, Dyer TD, Charlesworth J, Cole SA, Jowett JB, Abraham LJ, Rainwater DL, Comuzzie AG, Mahaney MC, Almasy L, MacCluer JW, Kissebah AH, Collier GR, Moses EK, and Blangero J. (2007) Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nat Genet 39, 1208–16.

    Article  PubMed  Google Scholar 

  25. Carro MS, Lim WK, Alvarez MJ, Bollo RJ, Zhao X, Snyder EY, Sulman EP, Anne SL, Doetsch F, Colman H, Lasorella A, Aldape K, Califano A, and Iavarone A. (2010) The transcriptional network for mesenchymal transformation of brain tumours. Nature 463, 318–25.

    Article  PubMed  CAS  Google Scholar 

  26. Margolin AA, Wang K, Lim WK, Kustagi M, Nemenman I, and Califano A. (2006) Reverse engineering cellular networks. Nat Protoc 1, 662–71.

    Article  PubMed  CAS  Google Scholar 

  27. Robinson RW. (1973) Counting labeled acyclic digraphs, in ‘New directions in the theory of graphs’, F. Haray ed., Academic Press, New York.

    Google Scholar 

  28. Ott S, Imoto S, and Miyano S. (2004) Finding optimal models for small gene networks. Pac Symp Biocomput 9, 557–67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tanaka, H., Ogishima, S. (2011). Omics-Based Identification of Pathophysiological Processes. In: Mayer, B. (eds) Bioinformatics for Omics Data. Methods in Molecular Biology, vol 719. Humana Press. https://doi.org/10.1007/978-1-61779-027-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-027-0_23

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-026-3

  • Online ISBN: 978-1-61779-027-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics