In Vivo Analysis of RNA Editing in Plastids

  • Stephanie Ruf
  • Ralph BockEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 718)


mRNA editing in plastids (chloroplasts) of higher plants proceeds by cytidine-to-uridine conversion at highly specific sites. Editing sites are recognized by the interplay of cis-acting elements at the RNA level and site-specific trans-acting protein factors that are believed to bind to the cis-elements in a sequence-specific manner. The C-to-U editing enzyme, a presumptive cytidine deaminase acting on polynucleotides, is still unknown. The development of methods for the stable genetic transformation of the plastid genome in higher plants has facilitated the analysis of RNA editing in vivo. Plastid transformation has been extensively used to define the sequence requirements for editing site selection and to address questions about editing site evolution. This chapter describes the basic methods involved in the generation and analysis of plants with transgenic chloroplast genomes and summarizes the applications of plastid transformation in editing research.

Key words

RNA editing Plastid Chloroplast Nicotiana tabacum Plastid transformation Biolistic transformation Particle gun cis-Acting element Evolution 



Work on RNA editing and plastid transformation in the authors’ laboratory is supported by the Max Planck Society and by grants from the Deutsche Forschungsgemeinschaft (DFG), the Bundesministerium für Bildung und Forschung (BMBF), and the European Union (Framework Programs 6 and 7).


  1. 1.
    Bock, R. (2000) Sense from nonsense: how the genetic information of chloroplasts is altered by RNA editing. Biochimie 82, 549–557.PubMedCrossRefGoogle Scholar
  2. 2.
    Bock, R. (2001) RNA editing in plant mitochondria and chloroplasts. Frontiers in Molecular Biology: RNA Editing, Bass, B. (ed.), Oxford University Press, New York, 38–60.Google Scholar
  3. 3.
    Schmitz-Linneweber, C. and Barkan, A. (2007) RNA splicing and RNA editing in chloroplasts. Top. Curr. Genet. 19, 213–248.CrossRefGoogle Scholar
  4. 4.
    Karcher, D. and Bock, R. (2009) Identification of the chloroplast adenosine-to-inosine tRNA editing enzyme. RNA 15, 1251–1257.PubMedCrossRefGoogle Scholar
  5. 5.
    Ruf, S., Zeltz, P. and Kössel, H. (1994) Complete RNA editing of unspliced and dicistronic transcripts of the intron-containing reading frame IRF170 from maize chloroplasts. Proc. Natl. Acad. Sci. U S A 91, 2295–2299.PubMedCrossRefGoogle Scholar
  6. 6.
    Zeltz, P., Hess, W. R., Neckermann, K., Börner, T. and Kössel, H. (1993) Editing of the chloroplast rpoB transcript is independent of chloroplast translation and shows different patterns in barley and maize. EMBO J. 12, 4291–4296.PubMedGoogle Scholar
  7. 7.
    Karcher, D. and Bock, R. (1998) Site-selective inhibition of plastid RNA editing by heat shock and antibiotics: a role for plastid translation in RNA editing. Nucleic Acids Res. 26, 1185–1190.PubMedCrossRefGoogle Scholar
  8. 8.
    Karcher, D. and Bock, R. (2002) Temperature sensitivity of RNA editing and intron splicing reactions in the plastid ndhB transcript. Curr. Genet. 41, 48–52.PubMedCrossRefGoogle Scholar
  9. 9.
    Kudla, J. and Bock, R. (1999) RNA editing in an untranslated region of the Ginkgo chloroplast genome. Gene 234, 81–86.PubMedCrossRefGoogle Scholar
  10. 10.
    Kahlau, S., Aspinall, S., Gray, J. C. and Bock, R. (2006) Sequence of the tomato chloroplast DNA and evolutionary comparison of solanaceous plastid genomes. J. Mol. Evol. 63, 194–207.PubMedCrossRefGoogle Scholar
  11. 11.
    Maier, R. M., Hoch, B., Zeltz, P. and Kössel, H. (1992) Internal editing of the maize chloroplast ndhA transcript restores codons for conserved amino acids. Plant Cell 4, 609–616.PubMedCrossRefGoogle Scholar
  12. 12.
    Freyer, R., Kiefer-Meyer, M.-C. and Kössel, H. (1997) Occurrence of plastid RNA editing in all major lineages of land plants. Proc. Natl. Acad. Sci. U S A 94, 6285–6290.PubMedCrossRefGoogle Scholar
  13. 13.
    Fiebig, A., Stegemann, S. and Bock, R. (2004) Rapid evolution of RNA editing sites in a small non-essential plastid gene. Nucleic Acids Res. 32, 3615–3622.PubMedCrossRefGoogle Scholar
  14. 14.
    Bock, R., Hagemann, R., Kössel, H. and Kudla, J. (1993) Tissue- and stage-specific modulation of RNA editing of the psbF and psbL transcript from spinach plastids – a new regulatory mechanism? Mol. Gen. Genet. 240, 238–244.PubMedCrossRefGoogle Scholar
  15. 15.
    Karcher, D. and Bock, R. (2002) The amino acid sequence of a plastid protein is developmentally regulated by RNA editing. J. Biol. Chem. 277, 5570–5574.PubMedCrossRefGoogle Scholar
  16. 16.
    Kahlau, S. and Bock, R. (2008) Plastid transcriptomics and translatomics of tomato fruit development and chloroplast-to-chromoplast differentiation: chromoplast gene expression largely serves the production of a single protein. Plant Cell 20, 856–874.PubMedCrossRefGoogle Scholar
  17. 17.
    Bock, R., Kössel, H. and Maliga, P. (1994) Introduction of a heterologous editing site into the tobacco plastid genome: the lack of RNA editing leads to a mutant phenotype. EMBO J. 13, 4623–4628.PubMedGoogle Scholar
  18. 18.
    Bock, R., Hermann, M. and Kössel, H. (1996) In vivodissection of cis-acting determinants for plastid RNA editing. EMBO J. 15, 5052–5059.PubMedGoogle Scholar
  19. 19.
    Chaudhuri, S. and Maliga, P. (1996) Sequences directing C to U editing of the plastid psbL mRNA are located within a 22 nucleotide segment spanning the editing site. EMBO J. 15, 5958–5964.PubMedGoogle Scholar
  20. 20.
    Bock, R., Hermann, M. and Fuchs, M. (1997) Identification of critical nucleotide positions for plastid RNA editing site recognition. RNA 3, 1194–1200.PubMedGoogle Scholar
  21. 21.
    Hermann, M. and Bock, R. (1999) Transfer of plastid RNA-editing activity to novel sites suggests a critical role for spacing in editing-site recognition. Proc. Natl. Acad. Sci. U S A 96, 4856–4861.PubMedCrossRefGoogle Scholar
  22. 22.
    Miyamoto, T., Obokata, J. and Sugiura, M. (2002) Recognition of RNA editing sites is directed by unique proteins in chloroplasts: biomedical identification of cis-acting elements and trans-acting factors involved in RNA editing in tobacco and pea chloroplasts. Mol. Cell. Biol. 22, 6726–6734.PubMedCrossRefGoogle Scholar
  23. 23.
    Chaudhuri, S., Carrer, H. and Maliga, P. (1995) Site-specific factor involved in the editing of the psbL mRNA in tobacco plastids. EMBO J. 14, 2951–2957.PubMedGoogle Scholar
  24. 24.
    Bock, R. and Koop, H.-U. (1997) Extraplastidic site-specific factors mediate RNA editing in chloroplasts. EMBO J. 16, 3282–3288.PubMedCrossRefGoogle Scholar
  25. 25.
    Hirose, T. and Sugiura, M. (2001) Invo­lvement of a site-specific trans-acting factor and a common RNA-binding protein in the editing of chloroplast mRNAs: development of a chloroplast in vitroRNA editing system. EMBO J. 20, 1144–1152.PubMedCrossRefGoogle Scholar
  26. 26.
    Kotera, E., Tasaka, M. and Shikanai, T. (2005) A pentatricopeptide repeat protein is essential for RNA editing in chloroplasts. Nature 433, 326–330.PubMedCrossRefGoogle Scholar
  27. 27.
    Okuda, K., Nakamura, T., Sugita, M., Shimizu, T. and Shikanai, T. (2006) A pentatricopeptide repeat protein is a site recognition factor in chloroplast RNA editing. J. Biol. Chem. 281, 37661–37667.PubMedCrossRefGoogle Scholar
  28. 28.
    Chateigner-Boutin, A.-L., Ramos-Vega, M., Guevara-García, A., Andrés, C., Gutiérrez-Nava, M., Cantero, A., Delannoy, E., Jiménez, L. F., Lurin, C., Small, I. and León, P. (2008) CLB19, a pentatricopeptide repeat protein required for editing of rpoA and clpP chloroplast transcripts. Plant J. 56, 590–602.PubMedCrossRefGoogle Scholar
  29. 29.
    Bock, R. and Maliga, P. (1995)In vivotesting of a tobacco plastid DNA segment for guide RNA function in psbL editing. Mol. Gen. Genet. 247, 439–443.PubMedCrossRefGoogle Scholar
  30. 30.
    Miyamoto, T., Obokata, J. and Sugiura, M. (2004) A site-specific factor interacts directly with its cognate RNA editing site in chloroplast transcripts. Proc. Natl. Acad. Sci. U S A 101, 48–52.PubMedCrossRefGoogle Scholar
  31. 31.
    Hegeman, C. E., Hayes, M. L. and Hanson, M. R. (2005) Substrate and cofactor requirements for RNA editing of chloroplast transcripts in Arabidopsis in vitro. Plant J. 42, 124–132.PubMedCrossRefGoogle Scholar
  32. 32.
    Sasaki, T., Yukawa, Y., Wakasugi, T., Yamada, K. and Sugiura, M. (2006) A simple in vitroRNA editing assay for chloroplast transcripts using fluorescent dideoxynucleotides: distinct types of sequence elements required for editing of ndh transcripts. Plant J. 47, 802–810.PubMedCrossRefGoogle Scholar
  33. 33.
    Heller, W. P., Hayes, M. L. and Hanson, M. R. (2008) Cross-competition in editing of chloroplast RNA transcripts in vitroimplicates sharing of trans-factors between different C targets. J. Biol. Chem. 283, 7314–7319.PubMedCrossRefGoogle Scholar
  34. 34.
    Bock, R. (1998) Analysis of RNA editing in plastids. Methods 15, 75–83.PubMedCrossRefGoogle Scholar
  35. 35.
    Bock, R. (2004) Studying RNA editing in transgenic chloroplasts of higher plants. Methods Mol. Biol. 265, 345–356.PubMedGoogle Scholar
  36. 36.
    Bock, R. (2001) Transgenic chloroplasts in basic research and plant biotechnology. J. Mol. Biol. 312, 425–438.PubMedCrossRefGoogle Scholar
  37. 37.
    Bock, R. and Khan, M. S. (2004) Taming plastids for a green future. Trends Biotechnol. 22, 311–318.PubMedCrossRefGoogle Scholar
  38. 38.
    Maliga, P. (2004) Plastid transformation in higher plants. Annu. Rev. Plant Biol. 55, 289–313.PubMedCrossRefGoogle Scholar
  39. 39.
    Bock, R. (2007) Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr. Opin. Biotechnol. 18, 100–106.PubMedCrossRefGoogle Scholar
  40. 40.
    Reed, M. L., Peeters, N. M. and Hanson, M. R. (2001) A single alteration 20 nt 5′ to an editing target inhibits chloroplast RNA editing in vivo. Nucleic Acids Res. 29, 1507–1513.PubMedCrossRefGoogle Scholar
  41. 41.
    Sutton, C. A., Zoubenko, O. V., Hanson, M. R. and Maliga, P. (1995) A plant mitochondrial sequence transcribed in transgenic tobacco chloroplasts is not edited. Mol. Cell. Biol. 15, 1377–1381.PubMedGoogle Scholar
  42. 42.
    Reed, M. L. and Hanson, M. R. (1997) A heterologous maize rpoB editing site is recognized by transgenic tobacco chloroplasts. Mol. Cell. Biol. 17, 6948–6952.PubMedGoogle Scholar
  43. 43.
    Schmitz-Linneweber, C., Tillich, M., Herrmann, R. G. and Maier, R. M. (2001) Heterologous, splicing-dependent RNA editing in chloroplasts: allotetraploidy provides trans-factors. EMBO J. 20, 4874–4883.PubMedCrossRefGoogle Scholar
  44. 44.
    Karcher, D., Kahlau, S. and Bock, R. (2008) Faithful editing of a tomato-specific mRNA editing site in transgenic tobacco chloroplasts. RNA 14, 217–224.PubMedCrossRefGoogle Scholar
  45. 45.
    Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bio assays with tobacco tissue culture. Physiol. Plant 15, 473–497.CrossRefGoogle Scholar
  46. 46.
    Svab, Z. and Maliga, P. (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc. Natl. Acad. Sci. U S A 90, 913–917.PubMedCrossRefGoogle Scholar
  47. 47.
    Ruf, S., Hermann, M., Berger, I. J., Carrer, H. and Bock, R. (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat. Biotechnol. 19, 870–875.PubMedCrossRefGoogle Scholar
  48. 48.
    Wurbs, D., Ruf, S. and Bock, R. (2007) Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. Plant J. 49, 276–288.PubMedCrossRefGoogle Scholar
  49. 49.
    Dufourmantel, N., Pelissier, B., Garcon, F., Peltier, G., Ferullo, J.-M. and Tissot, G. (2004) Generation of fertile transplastomic soybean. Plant Mol. Biol. 55, 479–489.PubMedCrossRefGoogle Scholar
  50. 50.
    Dufourmantel, N., Tissot, G., Goutorbe, F., Garcon, F., Muhr, C., Jansens, S., Pelissier, B., Peltier, G. and Dubald, M. (2005) Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protoxin. Plant Mol. Biol. 58, 659–668.PubMedCrossRefGoogle Scholar
  51. 51.
    Altpeter, F., Baisakh, N., Beachy, R., Bock, R., Capell, T., Christou, P., Daniell, H., Datta, K., Datta, S., Dix, P. J., Fauquet, C., Huang, N., Kohli, A., Mooibroek, H., Nicholson, L., Nguyen, T. T., Nugent, G., Raemakers, K., Romano, A., Somers, D. A., Stoger, E., Taylor, N. and Visser, R. (2005) Particle bombardment and the genetic enhancement of crops: myths and realities. Mol. Breed. 15, 305–327.CrossRefGoogle Scholar
  52. 52.
    Svab, Z., Hajdukiewicz, P. and Maliga, P. (1990) Stable transformation of plastids in higher plants. Proc. Natl. Acad. Sci. U S A 87, 8526–8530.PubMedCrossRefGoogle Scholar
  53. 53.
    Golds, T., Maliga, P. and Koop, H.-U. (1993) Stable plastid transformation in PEG-treated protoplasts of Nicotiana tabacum. Biotechnology 11, 95–97.CrossRefGoogle Scholar
  54. 54.
    O’Neill, C., Horvath, G. V., Horvath, E., Dix, P. J. and Medgyesy, P. (1993) Chloroplast transformation in plants: polyethylene glycol (PEG) treatment of protoplasts is an alternative to biolistic delivery systems. Plant J. 3, 729–738.PubMedCrossRefGoogle Scholar
  55. 55.
    Hayes, M. L., Reed, M. L., Hegeman, C. E. and Hanson, M. R. (2006) Sequence elements critical for efficient RNA editing of a tobacco chloroplast transcript in vivoand in vitro. Nucleic Acids Res. 34, 3742–3754.PubMedCrossRefGoogle Scholar
  56. 56.
    Chateigner-Boutin, A.-L. and Hanson, M. R. (2002) Cross-competition in transgenic chloroplasts expressing single editing sites reveals shared cis elements. Mol. Cell. Biol. 22, 8448–8456.PubMedCrossRefGoogle Scholar
  57. 57.
    Staub, J. M. and Maliga, P. (1994) Translation of the psbA mRNA is regulated by light via the 5′-untranslated region in tobacco plastids. Plant J. 6, 547–553.PubMedCrossRefGoogle Scholar
  58. 58.
    Ye, G.-N., Hajdukiewicz, P. T. J., Broyles, D., Rodriguez, D., Xu, C. W., Nehra, N. and Staub, J. M. (2001) Plastid-expressed 5-enolpyruvylshikimate-3-phosphate synthase genes provide high level glyphosate tolerance in tobacco. Plant J. 25, 261–270.PubMedCrossRefGoogle Scholar
  59. 59.
    Herz, S., Füssl, M., Steiger, S. and Koop, H.-U. (2005) Development of novel types of plastid transformation vectors and evaluation of factors controlling expression. Transgenic Res. 14, 969–982.PubMedCrossRefGoogle Scholar
  60. 60.
    Zhou, F., Karcher, D. and Bock, R. (2007) Identification of a plastid Intercistronic Expression Element (IEE) facilitating the expression of stable translatable monocistronic mRNAs from operons. Plant J. 52, 961–972.PubMedCrossRefGoogle Scholar
  61. 61.
    Bohne, A.-V., Ruf, S., Börner, T. and Bock, R. (2007) Faithful transcription initiation from a mitochondrial promoter in transgenic plastids. Nucleic Acids Res. 35, 7256–7266.PubMedCrossRefGoogle Scholar
  62. 62.
    Oey, M., Lohse, M., Kreikemeyer, B. and Bock, R. (2009) Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Plant J. 57, 436–445.PubMedCrossRefGoogle Scholar
  63. 63.
    Svab, Z. and Maliga, P. (1991) Mutation proximal to the tRNA binding region of the Nicotiana plastid 16S rRNA confers resistance to spectinomycin. Mol. Gen. Genet. 228, 316–319.PubMedCrossRefGoogle Scholar
  64. 64.
    Rogalski, M., Karcher, D. and Bock, R. (2008) Superwobbling facilitates translation with reduced tRNA sets. Nat. Struct. Mol. Biol. 15, 192–198.PubMedCrossRefGoogle Scholar
  65. 65.
    Oey, M., Lohse, M., Scharff, L. B., Kreikemeyer, B. and Bock, R. (2009) Plastid production of protein antibiotics against pneumonia via a new strategy for high-level expression of antimicrobial proteins. Proc. Natl. Acad. Sci. U S A 106, 6579–6584.PubMedCrossRefGoogle Scholar
  66. 66.
    Ayliffe, M. A. and Timmis, J. N. (1992) Tobacco nuclear DNA contains long tracts of homology to chloroplast DNA. Theor. Appl. Genet. 85, 229–238.CrossRefGoogle Scholar
  67. 67.
    Stegemann, S., Hartmann, S., Ruf, S. and Bock, R. (2003) High-frequency gene transfer from the chloroplast genome to the nucleus. Proc. Natl. Acad. Sci. U S A 100, 8828–8833.PubMedCrossRefGoogle Scholar
  68. 68.
    Bock, R. and Timmis, J. N. (2008) Reconstructing evolution: gene transfer from plastids to the nucleus. Bioessays 30, 556–566.PubMedCrossRefGoogle Scholar
  69. 69.
    Hager, M., Biehler, K., Illerhaus, J., Ruf, S. and Bock, R. (1999) Targeted inactivation of the smallest plastid genome-encoded open reading frame reveals a novel and essential subunit of the cytochrome b6f complex. EMBO J. 18, 5834–5842.PubMedCrossRefGoogle Scholar
  70. 70.
    Ruf, S., Biehler, K. and Bock, R. (2000) A small chloroplast-encoded protein as a novel architectural component of the light-harvesting antenna. J. Cell Biol. 149, 369–377.PubMedCrossRefGoogle Scholar
  71. 71.
    Ruf, S., Karcher, D. and Bock, R. (2007) Determining the transgene containment level provided by chloroplast transformation. Proc. Natl. Acad. Sci. U S A 104, 6998–7002.PubMedCrossRefGoogle Scholar
  72. 72.
    Bock, R. (2007) Structure, function, and inheritance of plastid genomes. Top. Curr. Genet. 19, 29–63.CrossRefGoogle Scholar
  73. 73.
    Doyle, J. J. and Doyle, J. L. (1990) Isolation of plant DNA from fresh tissue. Focus 12, 13–15.Google Scholar
  74. 74.
    Peeters, N. M. and Hanson, M. R. (2002) Transcript abundance supercedes editing efficiency as a factor in developmental variation of chloroplast gene expression. RNA 8, 497–511.PubMedCrossRefGoogle Scholar
  75. 75.
    Timmermans, M. C. P., Maliga, P., Vieira, J. and Messing, J. (1990) The pFF plasmids: cassettes utilising CaMV sequences for expression of foreign genes in plants. J. Biotechnol. 14, 333–344.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-GolmGermany
  2. 2.Max Planck Institute of Molecular Plant PhysiologyPotsdam-GolmGermany

Personalised recommendations