Advertisement

Perturbing A-to-I RNA Editing Using Genetics and Homologous Recombination

  • Cynthia J. Staber
  • Selena Gell
  • James E. C. Jepson
  • Robert A. ReenanEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 718)

Abstract

Evidence for the chemical conversion of adenosine-to-inosine (A-to-I) in messenger RNA (mRNA) has been detected in numerous metazoans, especially those “most successful” phyla: Arthropoda, Mollusca, and Chordata. The requisite enzymes for A-to-I editing, ADARs (adenosine deaminases acting on RNA) are highly conserved and are present in every higher metazoan genome sequenced to date. The fruit fly, Drosophila melanogaster, represents an ideal model organism for studying A-to-I editing, both in terms of fundamental biochemistry and in relation to determining adaptive downstream effects on physiology and behavior. The Drosophila genome contains a single structural gene for ADAR (dAdar), yet the fruit fly transcriptome has the widest range of conserved and validated ADAR targets in coding mRNAs of any known organism. In addition, many of the genes targeted by dADAR have been genetically identified as playing a role in nervous system function, providing a rich source of material to investigate the biological relevance of this intriguing process. Here, we discuss how recent advances in the use of ends-out homologous recombination (HR) in Drosophila make possible both the precise control of the editing status for defined adenosine residues and the engineering of flies with globally altered RNA editing of the fly transcriptome. These new approaches promise to significantly improve our understanding of how mRNA modification contributes to insect physiology and ethology.

Key words

Drosophila melanogaster RNA editing Homologous recombination 

Notes

Acknowledgments

The authors wish to thank members of the Reenan lab for helpful discussions and suggestions, especially Sarah Goldgar, and Leila Rieder.

References

  1. 1.
    Higuchi, M., Maas, S., Single, F. N., Hartner, J., Rozov, A., Burnashev, N., Feldmeyer, D., Sprengel, R., and Seeburg, P. H. (2000) Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406, 78–81PubMedCrossRefGoogle Scholar
  2. 2.
    Wang, Q., Khillan, J., Gadue, P., and Nishikura, K. (2000) Requirement of the RNA editing deaminase ADAR1 gene for embryonic erythropoiesis. Science 290, 1765–1768PubMedCrossRefGoogle Scholar
  3. 3.
    Palladino, M. J., Keegan, L. P., O’Connell, M. A., and Reenan, R. A. (2000) A-to-I pre-mRNA editing in Drosophila is primarily involved in adult nervous system function and integrity. Cell 102, 437–449PubMedCrossRefGoogle Scholar
  4. 4.
    Tonkin, L. A., Saccomanno, L., Morse, D. P., Brodigan, T., Krause, M., and Bass, B. L. (2002) RNA editing by ADARs is important for normal behavior in Caenorhabditis elegans. EMBO J 21, 6025–6035PubMedCrossRefGoogle Scholar
  5. 5.
    Bass, B. L. (2002) RNA editing by adenosine deaminases that act on RNA. Annu. Rev. Biochem. 71, 817–846PubMedCrossRefGoogle Scholar
  6. 6.
    Gallo, A., Keegan, L. P., Ring, G. M., and O’Connell, M. A. (2003) An ADAR that edits transcripts encoding ion channel subunits functions as a dimer. EMBO J 22, 3421–3430PubMedCrossRefGoogle Scholar
  7. 7.
    Basillo C, Wahba A. J, Lengyel P, Speyer J. F., and Ochoa S. (1962) Synthetic polynucleotides and the amino acid code. V. PNAS 48, 613–616CrossRefGoogle Scholar
  8. 8.
    Hanrahan, C. J., Palladino, M. J., Ganetzky, B., and Reenan, R. A. (2000) RNA editing of the Drosophila para Na+ channel transcript. Evolutionary conservation and developmental regulation. Genetics 155, 1149–1160Google Scholar
  9. 9.
    Reenan, R. A. (2005) Molecular determinants and guided evolution of species-specific RNA editing. Nature 434, 409–413PubMedCrossRefGoogle Scholar
  10. 10.
    Hoopengardner, B., Bhalla, T., Staber, C., and Reenan, R. (2003) Nervous system ­targets of RNA editing identified by comparative genomics. Science 301, 832–836PubMedCrossRefGoogle Scholar
  11. 11.
    Grauso, M., Reenan, R. A., Culetto, E., and Sattelle, D. B. (2002) Novel putative nicotinic acetylcholine receptor subunit genes, Dalpha5, Dalpha6 and Dalpha7, in Drosophila melanogaster identify a new and highly conserved target of adenosine deaminase acting on RNA-mediated A-to-I pre-mRNA editing. Genetics 160, 1519–1533PubMedGoogle Scholar
  12. 12.
    Smith, L. A., Peixoto, A. A., and Hall, J. C. (1998) RNA editing in the Drosophila DMCA1A calcium-channel alpha 1 subunit transcript. J Neurogenet. 12, 227–240PubMedCrossRefGoogle Scholar
  13. 13.
    Semenov, E. P., and Pak, W. L. (1999) Diversification of Drosophila chloride channel gene by multiple post-transcriptional mRNA modifications. J Neurochem 72, 66–72PubMedCrossRefGoogle Scholar
  14. 14.
    Hanrahan, C. J., Palladino, M. J., Bonneau, L. J., and Reenan, R. A. (1999) RNA editing of a Drosophila sodium channel gene. Ann N Y Acad Sci 868, 51–66PubMedCrossRefGoogle Scholar
  15. 15.
    Bhalla, T., Rosenthal, J. J., Holmgren, M., and Reenan, R. (2004) Control of human potassium channel inactivation by editing of a small mRNA hairpin. Nat Struct Mol Biol 11, 950–956PubMedCrossRefGoogle Scholar
  16. 16.
    Ingleby, L., Maloney, R., Jepson, J., Horn, R., and Reenan, R. (2009) Regulated RNA editing and functional epistasis in Shaker potassium channels. J Gen Phys 133, 17–27CrossRefGoogle Scholar
  17. 17.
    Rong, Y. S., and Golic, K. G. (2000) Gene targeting by homologous recombination in Drosophila. Science 288, 2013–2018PubMedCrossRefGoogle Scholar
  18. 18.
    Rong, Y. S., Titen, S. W., Xie, H. B., Golic, M. M., Bastiani, M., Bandyopadhyay, P., Olivera, B. M., Brodsky, M., Rubin, G. M., and Golic, K. G. (2002) Targeted ­mutagenesis by homologous recombination in D. melanogaster. Genes Dev 16, 1568–1581PubMedCrossRefGoogle Scholar
  19. 19.
    Wong, S. K., Sato, S., and Lazinski, D. W. (2001) Substrate recognition by ADAR1 and ADAR2. RNA 7, 846–858PubMedCrossRefGoogle Scholar
  20. 20.
    Keegan, L. P., Brindle, J., Gallo, A., Leroy, A., Reenan, R. A., and O’Connell, M. A. (2005) Tuning of RNA editing by ADAR is required in Drosophila. EMBO J 24, 2183–2193PubMedCrossRefGoogle Scholar
  21. 21.
    Palladino, M. J., Keegan, L. P., O’Connell, M. A., and Reenan, R. A. (2000) dADAR, a Drosophila double-stranded RNA-specific adenosine deaminase is highly developmentally regulated and is itself a target for RNA editing. RNA 6, 1004–1018PubMedCrossRefGoogle Scholar
  22. 22.
    Jones, A. K., Buckingham, S. D., Papadaki, M., Yokota, M., Sattelle, B. M., Matsuda, K., and Sattelle, D. B. (2009) Splice-variant- and stage-specific RNA editing of the Drosophila GABA receptor modulates agonist potency. J Neurosci 29, 4287–4292PubMedCrossRefGoogle Scholar
  23. 23.
    Ashburner, M. (1989) Drosophila: A Laboratory Handbook. Cold Spring Harbor Laboratory, New York Google Scholar
  24. 24.
    Staber C. and Mann R. Quickly and Easily Isolate Genomic DNA from Drosophila With No Preprocessing Using the Maxwell(r) 16 Instrument. Promega Corporation Web site. http://www.promega.com/pubs/tpub_017.htm Updated February 2010. New York
  25. 25.
    Greenspan, R. J. (1997) Fly Pushing: the theory and practice of Drosophila genetics. Cold Spring Harbor Laboratory, New York Google Scholar
  26. 26.
    Maggert, K. A., Gong, W. J., and Golic, K. G. (2008) Methods for homologous recombination in Drosophila. Methods Mol Biol 420, 155–174PubMedCrossRefGoogle Scholar
  27. 27.
    Siegal, M. L. and Hartl, D. L. (1996) Transgene coplacement and high efficiency site-specific recombination with the Cre/loxP system in Drosophila. Genetics 144, 715–726PubMedGoogle Scholar
  28. 28.
    O’Keefe, L. V., Smibert, P., Colella, A., Chataway, T. K., Saint, R., and Richards, R. I (2007) Know thy fly. TIGS 23, 238–242CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Cynthia J. Staber
    • 1
  • Selena Gell
    • 1
  • James E. C. Jepson
    • 1
  • Robert A. Reenan
    • 1
    Email author
  1. 1.Molecular Biology Cellular Biology and BiochemistryBrown UniversityProvidenceUSA

Personalised recommendations