Advertisement

Biochemical Fractionation and Purification of High-Molecular-Mass APOBEC3G Complexes

  • Ya-Lin ChiuEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 718)

Abstract

Human APOBEC3G (A3G) is a cytidine deaminase that broadly restricts the replication of many retroviruses, including HIV-1. In different cell types, cytoplasmic A3G is expressed in high-molecular-mass (HMM) RNA–protein complexes or low-molecular-mass (LMM) forms displaying different biological activities. LMM A3G has been proposed to restrict HIV-1 infection soon after virion entry in resting CD4 T cells, monocytes, and mature dendritic cells. Cellular activation and specific cytokine signaling promote the recruitment of LMM A3G into HMM complexes that are likely nucleated by the induced expression of Alu retroelement RNAs. HMM A3G sequesters these retroelement RNAs away from the nuclear LINE-derived enzymes required for Alu retrotransposition. However, assembly of A3G into HMM complexes suppresses its enzymatic activity and may render cells permissive to HIV-1 infection. During HIV-1 virion formation, newly synthesized LMM A3G is preferentially encapsidated when the HIV-1 viral protein viral infectivity factor is absent and employs sequential actions to restrict HIV-1. A3G’s biological activities are tightly regulated by its ability to assemble into HMM complexes. Here, we describe in detail the procedures for biochemical fractionation and purification of HMM A3G complexes. Purified HMM A3G complexes will be useful for studying many aspects of the A3G biology, including A3G’s roles in restricting retroviral replication, inhibiting retroelement mobility, and potentially regulating cellular RNA function.

Key words

APOBEC3G Cytidine deaminases HIV-1 Vif Alu Retrotransposition FPLC Tandem affinity purification High-molecular-mass Low-molecular-mass 

References

  1. 1.
    Sheehy, A. M., Gaddis, N. C., Choi, J. D., and Malim, M. H. (2002) Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418, 646–650.PubMedCrossRefGoogle Scholar
  2. 2.
    Chiu, Y. L. and Greene, W. C. (2008) The APOBEC3 cytidine deaminases: an innate defensive network opposing exogenous retroviruses and endogenous retroelements. Annu Rev Immunol 26, 317–353.PubMedCrossRefGoogle Scholar
  3. 3.
    Soros, V. B., Yonemoto, W., and Greene, W. C. (2007) Newly synthesized APOBEC3G is incorporated into HIV virions, inhibited by HIV RNA, and subsequently activated by RNase H. PLoS Pathog 3, e15.PubMedCrossRefGoogle Scholar
  4. 4.
    Bishop, K. N., Verma, M., Kim, E. Y., Wolinsky, S. M., and Malim, M. H. (2008) APOBEC3G inhibits elongation of HIV-1 reverse transcripts. PLoS Pathog 4, e1000231.PubMedCrossRefGoogle Scholar
  5. 5.
    Guo, F., Cen, S., Niu, M., Saadatmand, J., and Kleiman, L. (2006) Inhibition of formula-primed reverse transcription by human APOBEC3G during human immunodeficiency virus type 1 replication. J Virol 80, 11710–11722.PubMedCrossRefGoogle Scholar
  6. 6.
    Mangeat, B., Turelli, P., Caron, G., Friedli, M., Perrin, L., and Trono, D. (2003) Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424, 99–103.PubMedCrossRefGoogle Scholar
  7. 7.
    Lecossier, D., Bouchonnet, F., Clavel, F., and Hance, A. J. (2003) Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science 300, 1112.PubMedCrossRefGoogle Scholar
  8. 8.
    Harris, R. S., Bishop, K. N., Sheehy, A. M., Craig, H. M., Petersen-Mahrt, S. K., Watt, I. N., Neuberger, M. S., and Malim, M. H. (2003) DNA deamination mediates innate immunity to retroviral infection. Cell 113, 803–809.PubMedCrossRefGoogle Scholar
  9. 9.
    Zhang, H., Yang, B., Pomerantz, R. J., Zhang, C., Arunachalam, S. C., and Gao, L. (2003) The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 424, 94–98.PubMedCrossRefGoogle Scholar
  10. 10.
    Mbisa, J. L., Barr, R., Thomas, J. A., Vandegraaff, N., Dorweiler, I. J., Svarovskaia, E. S., Brown, W. L., Mansky, L. M., Gorelick, R. J., Harris, R. S., Engelman, A., and Pathak, V. K. (2007) HIV-1 cDNAs produced in the presence of APOBEC3G exhibit defects in plus-strand DNA transfer and integration. J Virol 81, 7099–7110.PubMedCrossRefGoogle Scholar
  11. 11.
    Luo, K., Wang, T., Liu, B., Tian, C., Xiao, Z., Kappes, J., and Yu, X. F. (2007) Cytidine deaminases APOBEC3G and APOBEC3F interact with HIV-1 integrase and inhibit proviral DNA formation. J Virol 81, 7238–7248.PubMedCrossRefGoogle Scholar
  12. 12.
    Stopak, K., de Noronha, C., Yonemoto, W., and Greene, W. C. (2003) HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. Mol Cell 12, 591–601.PubMedCrossRefGoogle Scholar
  13. 13.
    Conticello, S. G., Harris, R. S., and Neuberger, M. S. (2003) The Vif protein of HIV triggers degradation of the human antiretroviral DNA deaminase APOBEC3G. Curr Biol 13, 2009–2013.PubMedCrossRefGoogle Scholar
  14. 14.
    Marin, M., Rose, K. M., Kozak, S. L., and Kabat, D. (2003) HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. Nat Med 9, 1398–1403.PubMedCrossRefGoogle Scholar
  15. 15.
    Sheehy, A. M., Gaddis, N. C., and Malim, M. H. (2003) The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med 9, 1404–1407.PubMedCrossRefGoogle Scholar
  16. 16.
    Yu, X., Yu, Y., Liu, B., Luo, K., Kong, W., Mao, P., and Yu, X. F. (2003) Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 302, 1056–1060.PubMedCrossRefGoogle Scholar
  17. 17.
    Mariani, R., Chen, D., Schrofelbauer, B., Navarro, F., Konig, R., Bollman, B., Munk, C., Nymark-McMahon, H., and Landau, N. R. (2003) Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell 114, 21–31.PubMedCrossRefGoogle Scholar
  18. 18.
    Chiu, Y. L., Soros, V. B., Kreisberg, J. F., Stopak, K., Yonemoto, W., and Greene, W. C. (2005) Cellular APOBEC3G restricts HIV-1 infection in resting CD4+ T cells. Nature 435, 108–114.PubMedCrossRefGoogle Scholar
  19. 19.
    Kreisberg, J. F., Yonemoto, W., and Greene, W. C. (2006) Endogenous factors enhance HIV infection of tissue naive CD4 T cells by stimulating high molecular mass APOBEC3G complex formation. J Exp Med 203, 865–870.PubMedCrossRefGoogle Scholar
  20. 20.
    Stopak, K. S., Chiu, Y. L., Kropp, J., Grant, R. M., and Greene, W. C. (2007) Distinct patterns of cytokine regulation of APOBEC3G expression and activity in primary lymphocytes, macrophages, and dendritic cells. J Biol Chem 282, 3539–3546.PubMedCrossRefGoogle Scholar
  21. 21.
    Ellery, P. J., Tippett, E., Chiu, Y. L., Paukovics, G., Cameron, P. U., Solomon, A., Lewin, S. R., Gorry, P. R., Jaworowski, A., Greene, W. C., Sonza, S., and Crowe, S. M. (2007) The CD16+ monocyte subset is more permissive to infection and preferentially harbors HIV-1 in vivo. J Immunol 178, 6581–6589.PubMedGoogle Scholar
  22. 22.
    Pion, M., Granelli-Piperno, A., Mangeat, B., Stalder, R., Correa, R., Steinman, R. M., and Piguet, V. (2006) APOBEC3G/3F mediates intrinsic resistance of monocyte-derived dendritic cells to HIV-1 infection. J Exp Med 203, 2887–2893.PubMedCrossRefGoogle Scholar
  23. 23.
    Wang, F. X., Huang, J., Zhang, H., and Ma, X. (2008) APOBEC3G upregulation by alpha interferon restricts human immunodeficiency virus type 1 infection in human peripheral plasmacytoid dendritic cells. J Gen Virol 89, 722–730.PubMedCrossRefGoogle Scholar
  24. 24.
    Kamata, M., Nagaoka, Y., and Chen, I. S. (2009) Reassessing the role of APOBEC3G in human immunodeficiency virus type 1 infection of quiescent CD4+ T-cells. PLoS Pathog 5, e1000342.PubMedCrossRefGoogle Scholar
  25. 25.
    Santoni de Sio, F. R. and Trono, D. (2009) APOBEC3G-depleted resting CD4+ T cells remain refractory to HIV1 infection. PLoS One 4, e6571.PubMedCrossRefGoogle Scholar
  26. 26.
    Chen, K., Huang, J., Zhang, C., Huang, S., Nunnari, G., Wang, F. X., Tong, X., Gao, L., Nikisher, K., and Zhang, H. (2006) Alpha interferon potently enhances the anti-human immunodeficiency virus type 1 activity of APOBEC3G in resting primary CD4 T cells. J Virol 80, 7645–7657.PubMedCrossRefGoogle Scholar
  27. 27.
    Vetter, M. L. and D’Aquila, R. T. (2009) Cytoplasmic APOBEC3G restricts incoming Vif-positive HIV-1 and increases 2-LTR circle formation in activated T helper subtype cells. J Virol 83, 8646–8654.PubMedCrossRefGoogle Scholar
  28. 28.
    Lafferty, M. K., Sun, L., Demasi, L., Lu, W., and Garzino-Demo, A. CCR6 ligands inhibit HIV by inducing APOBEC3G. Blood 115, 1564–1571.PubMedCrossRefGoogle Scholar
  29. 29.
    Chiu, Y. L., Witkowska, H. E., Hall, S. C., Santiago, M., Soros, V. B., Esnault, C., Heidmann, T., and Greene, W. C. (2006) High-molecular-mass APOBEC3G complexes restrict Alu retrotransposition. Proc Natl Acad Sci USA 103, 15588–15593.PubMedCrossRefGoogle Scholar
  30. 30.
    Gallois-Montbrun, S., Kramer, B., Swanson, C. M., Byers, H., Lynham, S., Ward, M., and Malim, M. H. (2007) Antiviral protein APOBEC3G localizes to ribonucleoprotein complexes found in P bodies and stress granules. J Virol 81, 2165–2178.PubMedCrossRefGoogle Scholar
  31. 31.
    Kozak, S. L., Marin, M., Rose, K. M., Bystrom, C., and Kabat, D. (2006) The anti-HIV-1 editing enzyme APOBEC3G binds HIV-1 RNA and messenger RNAs that shuttle between polysomes and stress granules. J Biol Chem 281, 29105–29119.PubMedCrossRefGoogle Scholar
  32. 32.
    Wichroski, M. J., Robb, G. B., and Rana, T. M. (2006) Human retroviral host restriction factors APOBEC3G and APOBEC3F localize to mRNA processing bodies. PLoS Pathog 2, e41.PubMedCrossRefGoogle Scholar
  33. 33.
    Huang, J., Liang, Z., Yang, B., Tian, H., Ma, J., and Zhang, H. (2007) Derepression of microRNA-mediated protein translation inhibition by apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G) and its family members. J Biol Chem 282, 33632–33640.PubMedCrossRefGoogle Scholar
  34. 34.
    Dewannieux, M., Esnault, C., and Heidmann, T. (2003) LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 35, 41–48.PubMedCrossRefGoogle Scholar
  35. 35.
    Kazazian, H. H. J. (2004) Mobile elements: drivers of genome evolution. Science 303, 1626–1632.PubMedCrossRefGoogle Scholar
  36. 36.
    Hulme, A. E., Bogerd, H. P., Cullen, B. R., and Moran, J. V. (2007) Selective inhibition of Alu retrotransposition by APOBEC3G. Gene 390, 199–205.PubMedCrossRefGoogle Scholar
  37. 37.
    Boyum, A. (1968) Isolation of mononuclear cells and granulocytes from human blood. Isolation of mononuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl 97, 77–89.PubMedGoogle Scholar
  38. 38.
    Bain, B. and Pshyk, K. (1972) Enhanced reactivity in mixed leukocyte cultures after separation of mononuclear cells on Ficoll-Hypaque. Transplant Proc 4, 163–164.PubMedGoogle Scholar
  39. 39.
    Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., and Seraphin, B. (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17, 1030–1032.PubMedCrossRefGoogle Scholar
  40. 40.
    Puig, O., Caspary, F., Rigaut, G., Rutz, B., Bouveret, E., Bragado-Nilsson, E., Wilm, M., and Seraphin, B. (2001) The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24, 218–229.PubMedCrossRefGoogle Scholar
  41. 41.
    Wilson, D. S., Keefe, A. D., and Szostak, J. W. (2001) The use of mRNA display to select high-affinity protein-binding peptides. Proc Natl Acad Sci USA 98, 3750–3755.PubMedCrossRefGoogle Scholar
  42. 42.
    Keefe, A. D., Wilson, D. S., Seelig, B., and Szostak, J. W. (2001) One-step purification of recombinant proteins using a nanomolar-affinity streptavidin-binding peptide, the SBP-Tag. Protein Expr Purif 23, 440–446.PubMedCrossRefGoogle Scholar
  43. 43.
    Stofko-Hahn, R. E., Carr, D. W., and Scott, J. D. (1992) A single step purification for recombinant proteins. Characterization of a microtubule associated protein (MAP 2) fragment which associates with the type II cAMP-dependent protein kinase. FEBS Lett 302, 274–278.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Medicine, Gladstone Institute of Virology and ImmunologyUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations