Three-Dimensional Reconstruction of Trypanosoma brucei Editosomes Using Single-Particle Electron Microscopy

  • H. Ulrich GöringerEmail author
  • Holger Stark
  • Cordula Böhm
  • Bjoern Sander
  • Monika M. Golas
Part of the Methods in Molecular Biology book series (MIMB, volume 718)


RNA editing within the mitochondria of kinetoplastid protozoa is performed by a multicomponent ­macromolecular machine known as the editosome. Editosomes are high molecular mass protein assemblies that consist of about 15–25 individual polypeptides. They bind pre-edited transcripts and convert them into translation-competent mRNAs through a biochemical reaction cycle of enzyme-catalyzed steps. At steady-state conditions, several distinct complexes can be purified from mitochondrial detergent lysates. They likely represent RNA editing complexes at different assembly stages or at different functional stages of the processing reaction. Due to their low cellular abundance, single-particle electron microscopy (EM) represents the method of choice for their structural characterization. This chapter describes a set of techniques suitable for the purification and structural characterization of RNA editing complexes by single-particle EM. The RNA editing complexes are isolated from the endogenous pool of mitochondrial complexes by tandem-affinity purification (TAP). Since the TAP procedure results in the isolation of a mixture of different RNA editing complexes, the isolates are further subjected to an isokinetic ultracentrifugation step to separate the complexes based on their sedimentation behavior. The use of the “GraFix” protocol is presented that combines mild chemical cross-linking with ultracentrifugation. Different sample preparation protocols including negative staining, cryo-negative staining, and unstained cryotechniques as well as the single-particle image processing of electron microscopical images are described.

Key words

RNA editing Editosome Trypanosoma brucei Tandem-affinity purification (TAP) GraFix Surface plasmon resonance (SPR) Density gradient centrifugation Electron microscopy (EM) Cryo-EM Single-particle image processing 



MMG and BS are supported by a grant from the Danish Center for Scientific Computing (DCSC). HS is supported by a grant of the Bundesministerium für Bildung und Forschung (BMBF) and a European “3D Repertoire” grant. HUG is supported as an International Scholar of the Howard Hughes Medical Institute (HHMI) and by the German Research Foundation (DFG).


  1. 1.
    Alberts, B. (1998) The cell as a collection of protein machines: preparing the next generation of molecular biologists Cell 92, 291–4.PubMedCrossRefGoogle Scholar
  2. 2.
    Madison-Antenucci, S., Grams, J., and Hajduk, S. L. (2002) Editing machines: the complexities of trypanosome RNA editing Cell 108, 435–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Stuart, K. D., Schnaufer, A., Ernst, N. L., and Panigrahi, A. K. (2005) Complex management: RNA editing in trypanosomes Trends Biochem Sci 30, 97–105.PubMedCrossRefGoogle Scholar
  4. 4.
    Stark, H., and Lührmann, R. (2006) Cryo-electron microscopy of spliceosomal components Annu Rev Biophys Biomol Struct 35, 435–57.PubMedCrossRefGoogle Scholar
  5. 5.
    Leschziner, A. E., and Nogales, E. (2007) Visualizing flexibility at molecular resolution: analysis of heterogeneity in single-particle electron microscopy reconstructions Annu Rev Biophys Biomol Struct 36, 43–62.PubMedCrossRefGoogle Scholar
  6. 6.
    Golas, M. M., Böhm, C., Sander, B., Effenberger, K., Brecht, M., Stark, H., and Göringer, H. U. (2009) Snapshots of the RNA editing machine in trypanosomes captured at different assembly stages in vivo EMBO J 28, 766–78.PubMedCrossRefGoogle Scholar
  7. 7.
    van Heel, M., Gowen, B., Matadeen, R., Orlova, E. V., Finn, R., Pape, T., Cohen, D., Stark, H., Schmidt, R., Schatz, M., and Patwardhan, A. (2000) Single-particle electron cryo-microscopy: towards atomic resolution Q Rev Biophys 33, 307–69.PubMedCrossRefGoogle Scholar
  8. 8.
    Frank, J. (2002) Single-particle imaging of macromolecules by cryo-electron microscopy Annu Rev Biophys Biomol Struct 31, 303–19.PubMedCrossRefGoogle Scholar
  9. 9.
    Kastner, B., Fischer, N., Golas, M. M., Sander, B., Dube, P., Boehringer, D., Hartmuth, K., Deckert, J., Hauer, F., Wolf, E., Uchtenhagen, H., Urlaub, H., Herzog, F., Peters, J. M., Poerschke, D., Lührmann, R., and Stark, H. (2008) GraFix: sample preparation for single-particle electron cryomicroscopy Nat Methods 5, 53–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Brun, R., and Schönenberger, M. (1979) Cultivation and in vitro cloning of procyclic culture forms of Trypanosoma brucei in a semi-defined medium Acta Trop 36, 289–92.PubMedGoogle Scholar
  11. 11.
    Wirtz, E., Leal, S., Ochatt, C., and Cross, G. A. (1999) A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypano-soma brucei Mol Biochem Parasitol 99, 89–101.PubMedCrossRefGoogle Scholar
  12. 12.
    Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., and Seraphin, B. (1999) A generic protein purification method for protein complex characterization and proteome exploration Nat Biotechnol 17, 1030–2.PubMedCrossRefGoogle Scholar
  13. 13.
    Brecht, M., Niemann, M., Schlüter, E., Müller, U. F., Stuart, K., and Göringer, H. U. (2005) TbMP42, a protein component of the RNA editing complex in African trypanosomes, has endo-exoribonuclease activity Mol Cell 17, 621–30.PubMedCrossRefGoogle Scholar
  14. 14.
    Panigrahi, A. K., Schnaufer, A., Carmean, N., Igo, R. P., Jr., Gygi, S. P., Ernst, N. L., Palazzo, S. S., Weston, D. S., Aebersold, R., Salavati, R., and Stuart, K. D. (2001) Four related proteins of the Trypanosoma brucei RNA editing complex Mol Cell Biol 21, 6833–40.PubMedCrossRefGoogle Scholar
  15. 15.
    Cross, G. A. (1975) Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei Parasitology 71, 393–417.PubMedCrossRefGoogle Scholar
  16. 16.
    Hauser, R., Pypaert, M., Hausler, T., Horn, E. K., and Schneider, A. (1996) In vitro import of proteins into mitochondria of Trypanosoma brucei and Leishmania tarentolae J Cell Sci 109 (Pt 2), 517–23.PubMedGoogle Scholar
  17. 17.
    Igo, R. P., Jr., Palazzo, S. S., Burgess, M. L., Panigrahi, A. K., and Stuart, K. (2000) Uridylate addition and RNA ligation contribute to the specificity of kinetoplastid insertion RNA editing Mol Cell Biol 20, 8447–57.PubMedCrossRefGoogle Scholar
  18. 18.
    Igo, R. P., Jr., Weston, D. S., Ernst, N. L., Panigrahi, A. K., Salavati, R., and Stuart, K. (2002) Role of uridylate-specific exoribonuclease activity in Trypanosoma brucei RNA editing Eukaryot Cell 1, 112–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Clauser, K. R., Baker, P., and Burlingame, A. L. (1999) Role of accurate mass measurement (+/− 10 ppm) in protein identification strategies employing MS or MS/MS and database searching Anal Chem 71, 2871–82.PubMedCrossRefGoogle Scholar
  20. 20.
    Hunter, W. M., and Greenwood, F. C. (1962) Preparation of iodine-131 labelled human growth hormone of high specific activity Nature 194, 495–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Golas, M. M., Sander, B., Will, C. L., Lührmann, R., and Stark, H. (2003) Molecu­lar architecture of the multiprotein splicing factor SF3b Science 300, 980–4.PubMedCrossRefGoogle Scholar
  22. 22.
    Harris, J. R. (2007) Negative staining of thinly spread biological samples Methods Mol Biol 369, 107–42.PubMedCrossRefGoogle Scholar
  23. 23.
    Adrian, M., Dubochet, J., Fuller, S. D., and Harris, J. R. (1998) Cryo-negative staining Micron 29, 145–60.PubMedCrossRefGoogle Scholar
  24. 24.
    Golas, M. M., Sander, B., Will, C. L., Lührmann, R., and Stark, H. (2005) Major conformational change in the complex SF3b upon integration into the spliceosomal U11/U12 di-snRNP as revealed by electron cryomicroscopy Mol Cell 17, 869–83.PubMedCrossRefGoogle Scholar
  25. 25.
    Adrian, M., Dubochet, J., Lepault, J., and McDowall, A. W. (1984) Cryo-electron microscopy of viruses Nature 308, 32–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Chiu, W., Downing, K. H., Dubochet, J., Glaeser, R. M., Heide, H. G., Knapek, E., Kopf, D. A., Lamvik, M. K., Lepault, J., Robertson, J. D., Zeitler, E., and Zemlin, F. (1986) Cryoprotection in electron microscopy J Microsc 141, 385–91.Google Scholar
  27. 27.
    Sander, B., Golas, M. M., and Stark, H. (2005) Advantages of CCD detectors for de novothree-dimensional structure determination in single-particle electron microscopy J Struct Biol 151, 92–105.PubMedCrossRefGoogle Scholar
  28. 28.
    Radermacher, M. (1988) Three-dimensional reconstruction of single particles from random and nonrandom tilt series J Electron Microsc Tech 9, 359–94.PubMedCrossRefGoogle Scholar
  29. 29.
    van Heel, M., Harauz, G., Orlova, E. V., Schmidt, R., and Schatz, M. (1996) A new generation of the IMAGIC image processing system J Struct Biol 116, 17–24.PubMedCrossRefGoogle Scholar
  30. 30.
    Shaikh, T. R., Gao, H., Baxter, W. T., Asturias, F. J., Boisset, N., Leith, A., and Frank, J. (2008) SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs Nat Protoc 3, 1941–74.PubMedCrossRefGoogle Scholar
  31. 31.
    Tang, G., Peng, L., Baldwin, P. R., Mann, D. S., Jiang, W., Rees, I., and Ludtke, S. J. (2007) EMAN2: an extensible image processing suite for electron microscopy J Struct Biol 157, 38–46.PubMedCrossRefGoogle Scholar
  32. 32.
    Chen, J. Z., and Grigorieff, N. (2007) SIGNATURE: a single-particle selection system for molecular electron microscopy J Struct Biol 157, 168–73.PubMedCrossRefGoogle Scholar
  33. 33.
    Sander, B., Golas, M. M., and Stark, H. (2003) Automatic CTF correction for single particles based upon multivariate statistical analysis of individual power spectra J Struct Biol 142, 392–401.PubMedCrossRefGoogle Scholar
  34. 34.
    Sorzano, C. O., Marabini, R., Velazquez-Muriel, J., Bilbao-Castro, J. R., Scheres, S. H., Carazo, J. M., and Pascual-Montano, A. (2004) XMIPP: a new generation of an open-source image processing package for electron microscopy J Struct Biol 148, 194–204.PubMedCrossRefGoogle Scholar
  35. 35.
    Grigorieff, N. (2007) FREALIGN: high-resolution refinement of single particle structures J Struct Biol 157, 117–25.PubMedCrossRefGoogle Scholar
  36. 36.
    van Heel, M. (1987) Angular reconstitution: a posteriori assignment of projection directions for 3D reconstruction Ultramicroscopy 21, 111–23.PubMedCrossRefGoogle Scholar
  37. 37.
    Penczek, P. A., Grassucci, R. A., and Frank, J. (1994) The ribosome at improved resolution: new techniques for merging and orientation refinement in 3D cryo-electron microscopy of biological particles Ultramicroscopy 53, 251–70.PubMedCrossRefGoogle Scholar
  38. 38.
    Sander, B., Golas, M. M., and Stark, H. (2003) Corrim-based alignment for improved speed in single-particle image processing J Struct Biol 143, 219–28.PubMedCrossRefGoogle Scholar
  39. 39.
    Hopwood, D. (1972) Theoretical and practical aspects of glutaraldehyde fixation Histochem J 4, 267–303.PubMedCrossRefGoogle Scholar
  40. 40.
    Migneault, I., Dartiguenave, C., Bertrand, M. J., and Waldron, K. C. (2004) Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking Biotechniques 37, 790–6, 8–802.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • H. Ulrich Göringer
    • 1
    Email author
  • Holger Stark
    • 2
    • 3
  • Cordula Böhm
    • 1
  • Bjoern Sander
    • 4
  • Monika M. Golas
    • 5
  1. 1.Department of GeneticsDarmstadt University of TechnologyDarmstadtGermany
  2. 2.Research Group of 3D Electron CryomicroscopyMax-Planck-Institute for Biophysical ChemistryGöttingenGermany
  3. 3.Göttingen Centre for Molecular BiologyUniversity of GöttingenGöttingenGermany
  4. 4.Stereology and Electron Microscopy Research LaboratoryAarhus UniversityAarhusDenmark
  5. 5.The Water and Salt Research Center, Institute of AnatomyAarhus UniversityAarhusDenmark

Personalised recommendations