Skip to main content

Computational Prediction of RNA Structural Motifs Involved in Post-Transcriptional Regulatory Processes

  • Protocol
  • First Online:
RNA Detection and Visualization

Part of the book series: Methods in Molecular Biology ((MIMB,volume 714))

Abstract

mRNA molecules are tightly regulated, mostly through interactions with proteins and other RNAs, but the mechanisms that confer the specificity of such interactions are poorly understood. It is clear, however, that this specificity is determined by both the nucleotide sequence and secondary structure of the mRNA. We developed RNApromo, an efficient computational tool for identifying structural elements within mRNAs that are involved in specifying post-transcriptional regulations. Using RNApromo, we predicted putative motifs in sets of mRNAs with substantial experimental evidence for common post-transcriptional regulation, including mRNAs with similar decay rates, mRNAs that are bound by the same RNA binding protein, and mRNAs with a common cellular localization. Our new RNA motif discovery tool reveals unexplored layers of post-transcriptional regulations in groups of RNAs, and is therefore an important step toward a better understanding of the regulatory information conveyed within RNA molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arava, Y., et al., Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A, 2003. 100(7): p. 3889–94.

    Article  PubMed  CAS  Google Scholar 

  2. Shepard, K.A., et al., Widespread cytoplasmic mRNA transport in yeast: identification of 22 bud–localized transcripts using DNA microarray analysis. Proc Natl Acad Sci U S A, 2003. 100(20): p. 11429–34.

    Article  PubMed  CAS  Google Scholar 

  3. Wang, Y., et al., Precision and functional specificity in mRNA decay. Proc Natl Acad Sci U S A, 2002. 99(9): p. 5860–5.

    Article  PubMed  CAS  Google Scholar 

  4. Anantharaman, V., E.V. Koonin, and L. Aravind, Comparative genomics and evolution of proteins involved in RNA metabolism. Nucleic Acids Res, 2002. 30(7): p. 1427–64.

    Article  PubMed  CAS  Google Scholar 

  5. Hentze, M.W., M.U. Muckenthaler, and N.C. Andrews, Balancing acts: molecular control of mammalian iron metabolism. Cell, 2004. 117(3): p. 285–97.

    Article  PubMed  CAS  Google Scholar 

  6. Olivier, C., et al., Identification of a conserved RNA motif essential for She2p recognition and mRNA localization to the yeast bud. Mol Cell Biol, 2005. 25(11): p. 4752–66.

    Article  PubMed  CAS  Google Scholar 

  7. Krol, A., Evolutionarily different RNA motifs and RNA-protein complexes to achieve selenoprotein synthesis. Biochimie, 2002. 84(8): p. 765–74.

    Article  PubMed  CAS  Google Scholar 

  8. Kertesz, M., et al., The role of site accessibility in microRNA target recognition. Nat Genet, 2007. 39(10): p. 1278–84.

    Article  PubMed  CAS  Google Scholar 

  9. Robins, H., Y. Li, and R.W. Padgett, Incorporating structure to predict microRNA targets. Proc Natl Acad Sci U S A, 2005. 102(11): p. 4006–9.

    Article  PubMed  CAS  Google Scholar 

  10. Long, D., et al., Potent effect of target structure on microRNA function. Nat Struct Mol Biol, 2007. 14(4): p. 287–94.

    Article  PubMed  CAS  Google Scholar 

  11. Zhao, Y., E. Samal, and D. Srivastava, Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature, 2005. 436(7048): p. 214–20.

    Article  PubMed  CAS  Google Scholar 

  12. Rabani, M., M. Kertesz, and E. Segal, Computational prediction of RNA structural motifs involved in posttranscriptional regulatory processes. Proc Natl Acad Sci U S A, 2008. 105(39): p. 14885–90.

    Google Scholar 

  13. Hofacker L.I., F.W., Stadler P.F., Bonhoeffer L.S., Tacker M., Schuster P., Fast Folding and Comparison of RNA Secondary Structures. Monatshefte fur Chemie, 1994. 125: p. 167–88.

    Google Scholar 

  14. Wuchty, S., et al., Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers, 1999. 49(2): p. 145–65.

    Article  PubMed  CAS  Google Scholar 

  15. Do, C.B., D.A. Woods, and S. Batzoglou, CONTRAfold: RNA secondary structure prediction without physics-based models. Bioinformatics, 2006. 22(14): p. e90–8.

    Article  PubMed  CAS  Google Scholar 

  16. Bleasby A. Rice P., Longden I. EMBOSS: The european molecular biology open software suite. Trends in Genetics, 16(6):276–277, 2000.

    Google Scholar 

  17. Eddy, S.R. and R. Durbin, RNA sequence analysis using covariance models. Nucleic Acids Res, 1994. 22(11): p. 2079–88.

    Article  PubMed  CAS  Google Scholar 

  18. Sakakibara, Y., et al., Stochastic context-free grammars for tRNA modeling. Nucleic Acids Res, 1994. 22(23): p. 5112–20.

    Article  PubMed  CAS  Google Scholar 

  19. Holmes, I., Accelerated probabilistic inference of RNA structure evolution. BMC Bioinformatics, 2005. 6: p. 73.

    Article  PubMed  Google Scholar 

  20. Yao, Z., Z. Weinberg, and W.L. Ruzzo, CMfinder--a covariance model based RNA motif finding algorithm. Bioinformatics, 2006. 22(4): p. 445–52.

    Article  PubMed  CAS  Google Scholar 

  21. Wiese, K.C. and A. Hendriks, Comparison of P-RnaPredict and mfold–algorithms for RNA secondary structure prediction. Bio-informatics, 2006. 22(8): p. 934–42.

    CAS  Google Scholar 

  22. He, L. and G.J. Hannon, MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet, 2004. 5(7): p. 522–31.

    Article  PubMed  CAS  Google Scholar 

  23. van Dongen S. Bateman A. Enright A.J. Griffiths-Jones S., Grocock R.J. miRBase: microRNA sequences, targets and gene nomenclature. nuc. acid res., 34:D140–4.

    Google Scholar 

  24. Griffiths-Jones S. The microRNA registry. nuc. acid res., 32:D109–11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eran Segal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Rabani, M., Kertesz, M., Segal, E. (2011). Computational Prediction of RNA Structural Motifs Involved in Post-Transcriptional Regulatory Processes. In: Gerst, J. (eds) RNA Detection and Visualization. Methods in Molecular Biology, vol 714. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-005-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-005-8_28

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-004-1

  • Online ISBN: 978-1-61779-005-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics