Skip to main content

Using the mRNA-MS2/MS2CP-FP System to Study mRNA Transport During Drosophila Oogenesis

  • Protocol
  • First Online:
RNA Detection and Visualization

Part of the book series: Methods in Molecular Biology ((MIMB,volume 714))

Abstract

Asymmetric mRNA localisation to specific compartments of the cell is a fundamental mechanism of ­spatial and temporal regulation of gene expression. It is used by a variety of organisms and cell types to achieve different cellular functions. However, the mechanisms of mRNA localisation are not well understood. An important advance in this field has been the development of techniques that allow the visualisation of mRNA movements in living cells in real time. In this paper, we describe one approach to visualising mRNA localisation in vivo, in which RNAs containing MS2 binding sites are labelled by the MS2 coat protein fused to fluorescent reporters. We discuss the use of this mRNA-MS2/MS2CP-FP system to study mRNA localisation during Drosophila oogenesis, and provide a detailed explanation of the steps required for this approach, including the design of the mRNA-MS2 and MS2CP-FP constructs, the preparation of fly oocytes for imaging, the optimal microscope configurations for live cell imaging, and strategies for image processing and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. St Johnston, D. (2005) Moving messages: the intracellular localization of mRNAs, Nat Rev Mol Cell Biol 6, 363  –375.

    Article  PubMed  CAS  Google Scholar 

  2. Kim-Ha, J., Smith, J. L., and Macdonald, P. M. (1991) oskar mRNA is localized to the posterior pole of the Drosophila oocyte, Cell 66, 23  –35.

    Article  PubMed  CAS  Google Scholar 

  3. Ephrussi, A., Dickinson, L. K., and Lehmann, R. (1991) Oskar organizes the germ plasm and directs localization of the posterior determinant nanos, Cell 66, 37–50.

    Article  PubMed  CAS  Google Scholar 

  4. Ephrussi, A., and Lehmann, R. (1992) Induction of germ cell formation by oskar, Nature 358, 387–392.

    Article  PubMed  CAS  Google Scholar 

  5. Gavis, E. R., and Lehmann, R. (1992) Localization of nanos RNA controls embryonic polarity, Cell 71, 301–313.

    Article  PubMed  CAS  Google Scholar 

  6. Berleth, T., Burri, M., Thoma, G., Bopp, D., Richstein, S., Frigerio, G., Noll, M., and Nusslein-Volhard, C. (1988) The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo, Embo J 7, 1749  –1756.

    PubMed  CAS  Google Scholar 

  7. Ephrussi, A., and Johnston, D. (2004) Seeing is believing the bicoid morphogen gradient matures, Cell 116, 143–152.

    Article  PubMed  CAS  Google Scholar 

  8. Neuman-Silberberg, F. S., and Schupbach, T. (1993) The Drosophila dorsoventral patterning gene gurken produces a dorsally localized RNA and encodes a TGF alpha-like protein, Cell 75, 165  –174.

    PubMed  CAS  Google Scholar 

  9. Cha, B., Koppetsch, B., and Theurkauf, W. (2001) In vivo analysis of Drosophila bicoid mRNA localization reveals a novel microtubule-dependent axis specification pathway, Cell 106, 35–  46.

    Article  PubMed  CAS  Google Scholar 

  10. MacDougall, N., Clark, A., MacDougall, E., and Davis, I. (2003) Drosophila gurken (TGFalpha) mRNA localizes as particles that move within the oocyte in two dynein-dependent steps, Dev Cell 4, 307–319.

    Article  PubMed  CAS  Google Scholar 

  11. Manseau, L., Calley, J., and Phan, H. (1996) Profilin is required for posterior patterning of the Drosophila oocyte, in Development 122, 2109  –2116.

    Google Scholar 

  12. Van De Bor, V., Hartswood, E., Jones, C., Finnegan, D., and Davis, I. (2005) gurken and the I factor retrotransposon RNAs share common localization signals and machinery, Dev Cell 9, 51–  62.

    Article  Google Scholar 

  13. Hachet, O., and Ephrussi, A. (2004) Splicing of oskar RNA in the nucleus is coupled to its cytoplasmic localization, in Nature 428, 959  –  963.

    Google Scholar 

  14. Long, R. M., Gu, W., Meng, X., Gonsalvez, G., Singer, R. H., and Chartrand, P. (2001) An exclusively nuclear RNA-binding protein affects asymmetric localization of ASH1 mRNA and Ash1p in yeast, J Cell Biol 153, 307–318.

    Article  PubMed  CAS  Google Scholar 

  15. Oleynikov, Y., and Singer, R. H. (2003) Real-time visualization of ZBP1 association with beta-actin mRNA during transcription and localization, in Current Biology 13, 199  –207.

    Google Scholar 

  16. Bratu, D. P., Cha, B. J., Mhlanga, M. M., Kramer, F. R., and Tyagi, S. (2003) Visualizing the distribution and transport of mRNAs in living cells, in Proc Natl Acad Sci U S A 100, 13308  –13313.

    Google Scholar 

  17. Wang, S., and Hazelrigg, T. (1994) Implications for bcd mRNA localization from spatial distribution of exu protein in Drosophila oogenesis., in Nature 369, 400  –  403.

    Google Scholar 

  18. Zimyanin, V. L., Belaya, K., Pecreaux, J., Gilchrist, M. J., Clark, A., Davis, I., and St Johnston, D. (2008) In vivo imaging of oskar mRNA transport reveals the mechanism of posterior localization, Cell 134, 843  –  853.

    Article  PubMed  CAS  Google Scholar 

  19. Bertrand, E., Chartrand, P., Schaefer, M., Shenoy, S., Singer, R., and Long, R. (1998) Localization of ASH1 mRNA particles in living yeast, Mol Cell 2, 437–  445.

    Article  PubMed  CAS  Google Scholar 

  20. Rodriguez, A. J., Condeelis, J., Singer, R. H., and Dictenberg, J. B. (2007) Imaging mRNA movement from transcription sites to translation sites, Seminars in cell & developmental biology 18, 202–208.

    Article  CAS  Google Scholar 

  21. Weil, T. T., Forrest, K. M., and Gavis, E. R. (2006) Localization of bicoid mRNA in late oocytes is maintained by continual active transport, in Dev Cell 11, 251–262.

    Google Scholar 

  22. Forrest, K., and Gavis, E. (2003) Live imaging of endogenous RNA reveals a diffusion and entrapment mechanism for nanos mRNA localization in Drosophila, Current Biology 13, 1159–1168.

    Article  PubMed  CAS  Google Scholar 

  23. Jaramillo, A. M., Weil, T. T., Goodhouse, J., Gavis, E. R., and Schupbach, T. (2008) The dynamics of fluorescently labeled endogenous gurken mRNA in Drosophila, J Cell Sci 121, 887–894.

    Article  PubMed  CAS  Google Scholar 

  24. Weil, T. T., Parton, R., Davis, I., and Gavis, E. R. (2008) Changes in bicoid mRNA anchoring highlight conserved mechanisms during the oocyte-to-embryo transition, Curr Biol 18, 1055  –1061.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang, Z., and Krainer, A. R. (2007) Splicing remodels messenger ribonucleoprotein architecture via eIF4A3-dependent and -independent recruitment of exon junction complex components, Proc Natl Acad Sci U S A 104, 11574  –11579.

    Article  PubMed  CAS  Google Scholar 

  26. Lange, S., Katayama, Y., Schmid, M., Burkacky, O., Brauchle, C., Lamb, D. C., and Jansen, R. P. (2008) Simultaneous transport of different localized mRNA species revealed by live-cell imaging, Traffic (Copenhagen, Denmark) 9, 1256  –1267.

    Google Scholar 

  27. Sullivan, W., Ashburner, M., and Hawley, R. S. (2000) Drosophila Protocols, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  28. Lowary, P. T., and Uhlenbeck, O. C. (1987) An RNA mutation that increases the affinity of an RNA-protein interaction, Nucleic acids research 15, 10483  –10493.

    Article  PubMed  CAS  Google Scholar 

  29. Valegard, K., Murray, J. B., Stonehouse, N. J., van den Worm, S., Stockley, P. G., and Liljas, L. (1997) The three-dimensional structures of two complexes between recombinant MS2 capsids and RNA operator fragments reveal sequence-specific protein-RNA interactions, J Mol Biol 270, 724  –738.

    Article  PubMed  CAS  Google Scholar 

  30. Gavis, E. R., Curtis, D., and Lehmann, R. (1996) Identification of cis-acting sequences that control nanos RNA localization, Dev Biol 176, 36  –50.

    Article  PubMed  CAS  Google Scholar 

  31. Macdonald, P. (1990) bicoid mRNA localization signal: phylogenetic conservation of function and RNA secondary structure, Development 110, 161–171.

    PubMed  CAS  Google Scholar 

  32. Thio, G. L., Ray, R. P., Barcelo, G., and Schupbach, T. (2000) Localization of gurken RNA in Drosophila oogenesis requires elements in the 5′ and 3′ regions of the transcript, Dev Biol 221, 435–  446.

    Article  PubMed  CAS  Google Scholar 

  33. Zimyanin, V., Lowe, N., and St Johnston, D. (2007) An Oskar-dependent positive feedback loop maintains the polarity of the Drosophila oocyte, in Current Biology.

    Google Scholar 

  34. Pirrotta, V. (1988) Vectors for P-mediated transformation in Drosophila, Biotechnology 10, 437–  456.

    PubMed  CAS  Google Scholar 

  35. Rorth, P. (1998) Gal4 in the Drosophila female germline, Mech Dev 78, 113  –118.

    Article  PubMed  CAS  Google Scholar 

  36. Fusco, D., Accornero, N., Lavoie, B., Shenoy, S. M., Blanchard, J. M., Singer, R. H., and Bertrand, E. (2003) Single mRNA molecules demonstrate probabilistic movement in living Mammalian cells, in Current Biology 13, 161–167.

    Google Scholar 

  37. Peabody, D. S., and Ely, K. R. (1992) Control of translational repression by protein-protein interactions, Nucleic Acids Research 20, 1649–1655.

    Article  PubMed  CAS  Google Scholar 

  38. Wagner, C., Palacios, I., Jaeger, L., and St Johnston, D. (2001) Dimerization of the 3′ UTR of bicoid mRNA involves a two-step mechanism, Journal of Molecular Biology 313, 511–524.

    Article  PubMed  CAS  Google Scholar 

  39. Rubin, G. M., and Spradling, A. C. (1982) Genetic transformation of Drosophila with transposable element vectors, Science 218, 348  –353.

    Article  PubMed  CAS  Google Scholar 

  40. Spradling, A. C., and Rubin, G. M. (1982) Transposition of cloned P elements into Drosophila germ line chromosomes, Science 218, 341–347.

    Article  PubMed  CAS  Google Scholar 

  41. Greenspan, R. J. (2004) Fly Pushing: the theory and practice of Drosophila Genetics, 2nd ed., Cold Spring Harbor Press, Cold Spring Harbor, New York.

    Google Scholar 

  42. Snee, M. J., and Macdonald, P. M. (2009) Dynamic organization and plasticity of sponge bodies, Dev Dyn 238, 918  –930.

    Article  PubMed  CAS  Google Scholar 

  43. Swedlow, J. R., Hu, K., Andrews, P. D., Roos, D. S., and Murray, J. M. (2002) Measuring tubulin content in Toxoplasma gondii: a comparison of laser-scanning confocal and wide-field fluorescence microscopy, Proc Natl Acad Sci U S A 99, 2014  –2019.

    Article  PubMed  CAS  Google Scholar 

  44. Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction, Nucleic acids research 31, 3406  –3415.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

K.B. was supported by the Darwin Trust of Edinburgh. D. St J. was supported by a Wellcome Trust Principal Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel St Johnston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Belaya, K., Johnston, D.S. (2011). Using the mRNA-MS2/MS2CP-FP System to Study mRNA Transport During Drosophila Oogenesis. In: Gerst, J. (eds) RNA Detection and Visualization. Methods in Molecular Biology, vol 714. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-005-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-005-8_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-004-1

  • Online ISBN: 978-1-61779-005-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics