Skip to main content

High-Field MRI of Brain Iron

  • Protocol
  • First Online:
Magnetic Resonance Neuroimaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 711))

Abstract

Recent developments in high-field MRI have provided opportunities to detect iron in human brain with much improved sensitivity. The combination of increased magnetic field strength with multi-channel detectors has made it possible to routinely obtain images at about 300 μm resolution. These images can be sensitized to tissue iron by exploiting the improved magnetic susceptibility contrast at high field. Together, these techniques have the potential to map the fine scale distribution of iron in human brain at the level of fiber bundles and cortical laminae, and may aid in the understanding of the role and transport of iron in normal brain and in disease. In this chapter, we will look at these techniques in detail and present some examples of high-field MRI data of human brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morris, C. M. et al. Brain iron homeostasis (Translated from Eng). J Inorg Biochem 1992;47(3–4):257–265 (in Eng).

    Article  PubMed  CAS  Google Scholar 

  2. Burdo, J. R., Connor, J. R. Brain iron uptake and homeostatic mechanisms: An overview (Translated from Eng). Biometals 2003;16(1):63–75 (in Eng).

    Article  PubMed  CAS  Google Scholar 

  3. Zecca, L., Youdim, M. B., Riederer, P., Connor, J. R., Crichton, R. R. Iron, brain ageing and neurodegenerative disorders (Translated from Eng). Nat Rev Neurosci 2004;5(11):863–873 (in Eng).

    Article  PubMed  CAS  Google Scholar 

  4. Drayer, B. et al. MRI of brain iron. Am J Roentgenol 1986;147(1):103–110.

    CAS  Google Scholar 

  5. Schenck, J. F. Magnetic resonance imaging of brain iron. J Neurol Sci 2003;207(1–2):99–102.

    Article  PubMed  Google Scholar 

  6. Haacke, E. M. et al. Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 2005;23(1):1–25.

    Article  PubMed  CAS  Google Scholar 

  7. Ogg, R. J., Langston, J. W., Haacke, E. M., Steen, R. G., Taylor, J. S. The correlation between phase shifts in gradient-echo MR images and regional brain iron concentration. Magn Reson Imaging 1999;17(8):1141–1148.

    Article  PubMed  CAS  Google Scholar 

  8. Duyn, J. H. et al. High-field MRI of brain cortical substructure based on signal phase. Proc Natl Acad Sci USA 2007;104(28):11796–11801.

    Article  PubMed  CAS  Google Scholar 

  9. Sodickson, D. K., Manning, W. J. Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arrays. Magn Reson Med 1997;38(4):591–603.

    Article  PubMed  CAS  Google Scholar 

  10. Pruessmann, K. P., Weiger, M., Scheidegger, M. B., Boesiger, P. SENSE: Sensitivity encoding for fast MRI. Magn Reson Med 1999;42(5):952–962.

    Article  PubMed  CAS  Google Scholar 

  11. van Gelderen, P., de Zwart, J. A., Starewicz, P., Hinks, R. S., Duyn, J. H. Real-time shimming to compensate for respiration-induced B0 fluctuations. Magn Reson Med 2007;57(2):362–368.

    Article  PubMed  Google Scholar 

  12. Derbyshire, J. A., Wright, G. A., Henkelman, R. M., Hinks, R. S. Dynamic scan-plane tracking using MR position monitoring (Translated from Eng). J Magn Reson Imaging 1998;8(4):924–932 (in Eng).

    Article  PubMed  CAS  Google Scholar 

  13. Tremblay, M., Tam, F., Graham, S. J. Retrospective coregistration of functional magnetic resonance imaging data using external monitoring. Magn Reson Med 2005;53(1):141–149.

    Article  PubMed  Google Scholar 

  14. Zaitsev, M., Dold, C., Sakas, G., Hennig, J., Speck, O. Magnetic resonance imaging of freely moving objects: Prospective real-time motion correction using an external optical motion tracking system (Translated from Eng). Neuroimage 2006;31(3):1038–1050 (in Eng).

    Article  PubMed  CAS  Google Scholar 

  15. Qin, L. et al. Prospective head-movement correction for high-resolution MRI using an in-bore optical tracking system (Translated from Eng). Magn Reson Med 2009;62:924–934 (in Eng).

    Article  PubMed  Google Scholar 

  16. Ooi, M. B., Krueger, S., Thomas, W. J., Swaminathan, S. V., Brown, T. R. Prospective real-time correction for arbitrary head motion using active markers (Translated from Eng). Magn Reson Med 2009;62(4):943–954 (in Eng).

    Article  PubMed  Google Scholar 

  17. Sodickson, D. K., Griswold, M. A., Jakob, P. M. SMASH imaging. Magn Reson Imaging Clin N Am 1999;7(2):237–254, vii–viii.

    PubMed  CAS  Google Scholar 

  18. Fischl, B. et al. Sequence-independent segmentation of magnetic resonance images (Translated from Eng). Neuroimage 2004;23(Suppl 1):S69–S84 (in Eng).

    Article  PubMed  Google Scholar 

  19. Haacke, E. M., Lenz, G. W. Improving MR image quality in the presence of motion by using rephasing gradients (Translated from Eng). AJR Am J Roentgenol 1987;148(6):1251–1258 (in Eng).

    PubMed  CAS  Google Scholar 

  20. de Zwart, J. A., Ledden, P. J., Kellman, P., van Gelderen, P., Duyn, J. H. Design of a SENSE-optimized high-sensitivity MRI receive coil for brain imaging. Magn Reson Med 2002;47(6):1218–1227.

    Article  PubMed  Google Scholar 

  21. Abduljalil, A. M., Schmalbrock, P., Novak, V., Chakeres, D. W. Enhanced gray and white matter contrast of phase susceptibility-weighted images in ultra-high-field magnetic resonance imaging. J Magn Reson Imaging 2003;18(3):284–290.

    Article  PubMed  Google Scholar 

  22. Yao, B. et al. Susceptibility contrast in high field MRI of human brain as a function of tissue iron content (Translated from Eng). Neuroimage 2009;44(4):1259–1266 (in Eng).

    Article  PubMed  Google Scholar 

  23. Salomir, R., de Senneville, B. D., Moonen, C. T. W. A fast calculation method for magnetic field inhomogeneity Due To an arbitrary distribution of bulk susceptibility. Concepts Magn Reson B 2003;19B(1):26–34.

    Article  Google Scholar 

  24. Marques, J. P., Bowtell, R. W. Using forward calculations of the magnetic field perturbation Due To a realistic vascular model to explore the BOLD effect. NMR Biomed 2008;21(6):553–565.

    Article  PubMed  Google Scholar 

  25. de Rochefort, L., Brown, R., Prince, M. R., Wang, Y. Quantitative MR susceptibility mapping using piece-wise constant regularized inversion of the magnetic field (Translated from Eng). Magn Reson Med 2008;60(4):1003–1009 (in Eng).

    Article  PubMed  Google Scholar 

  26. Kressler, B. et al. Nonlinear regularization for per voxel estimation of magnetic susceptibility distributions from MRI field maps (Translated from Eng). IEEE Trans Med Imaging 2010;29(2):273–281 (in Eng).

    Article  PubMed  Google Scholar 

  27. Liu, T., Spincemaille, P., de Rochefort, L., Kressler, B., Wang, Y. Calculation of susceptibility through multiple orientation sampling (COSMOS): A method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI (Translated from Eng). Magn Reson Med 2009;61(1):196–204 (in Eng).

    Article  PubMed  Google Scholar 

  28. Shmueli, K., Li, J., Duyn, J. H. Magnetic susceptibility mapping of brain tissue in-vivo using MRI phase data (Translated from Eng). Magn Reson Med 2009;62(6):1510–1522 (in Eng).

    Article  PubMed  Google Scholar 

  29. Zhong, K., Leupold, J., von Elverfeldt, D., Speck, O. The molecular basis for gray and white matter contrast in phase imaging. Neuroimage 2008;40(4):1561–1566.

    Article  PubMed  Google Scholar 

  30. He, X., Yablonskiy, D. A. Biophysical mechanisms of phase contrast in gradient echo MRI (Translated from Eng). Proc Natl Acad Sci USA 2009;106(32):13558–13563 (in Eng).

    Article  PubMed  CAS  Google Scholar 

  31. Lee, D., Hirano, Y., Fukunaga, M., Silva, A. C., Duyn, J. H. On the contribution of deoxy-hemoglobin to MRI gray-white matter contrast at high field. Neuroimage 2010;49(1):193–198.

    Google Scholar 

  32. Fukunaga, M. et al. Layer-specific variation of iron content in cerebral cortex as a source of MRI contrast (Translated from Eng). Proc Natl Acad Sci USA 2009;107(8):3834–3839 (in Eng).

    Article  Google Scholar 

  33. Lee, J. et al. Sensitivity of MRI resonance frequency to the orientation of brain tissue microstructure (Translated from Eng). Proc Natl Acad Sci USA 2010;107(11):5130–5135 (in Eng).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

My colleagues in the laboratory of Advanced MRI are acknowledged for their contributions to this work. This research was supported by the Intramural Research Program of NIH, NINDS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef H. Duyn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Duyn, J.H. (2011). High-Field MRI of Brain Iron. In: Modo, M., Bulte, J. (eds) Magnetic Resonance Neuroimaging. Methods in Molecular Biology, vol 711. Humana Press. https://doi.org/10.1007/978-1-61737-992-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-992-5_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61737-991-8

  • Online ISBN: 978-1-61737-992-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics