Muskmelon Embryo Rescue Techniques Using In Vitro Embryo Culture

  • Hector Gordon Nuñez-Palenius
  • Rafael Ramírez-Malagón
  • Neftalí Ochoa-Alejo
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 710)

Abstract

Among the major cucurbit vegetables, melon (Cucumis melo) has one of the greatest polymorphic fruit types and botanical varieties. Some melon fruits have excellent aroma, variety of flesh colors, deeper flavor, and more juice compared to other cucurbits. Despite numerous available melon cultivars, some of them are exceedingly susceptible to several diseases. The genetic background carrying the genes for tolerance and/or resistance for those diseases is found in wild melon landraces. Unfortunately, the commercial melon varieties are not able to produce viable hybrids when crossed with their wild melon counterparts. Plant tissue culture techniques are needed to surpass those genetic barriers. In vitro melon embryo rescue has played a main role to obtain viable hybrids originated from commercial versus wild melon crosses. In this chapter, an efficient and simple embryo rescue melon protocol is thoroughly described.

Key words

Anther Cucumis melo Cucurbitaceae Melon Ovary Plant tissue culture Zygotic embryos 

References

  1. 1.
    Food and Agriculture Organization (FAO) (2007) FAOSTAT data. http://www.fao.org/corp/statistics/en/. Retrieved 3 March 2009
  2. 2.
    Zitter TA, Hopkins DL, Thomas CE (1998) Compendium of cucurbit diseases. APS, St. Paul, MNGoogle Scholar
  3. 3.
    Fehr WR, Fehr EL, Jessen HJ (1987) Principles of cultivar development, vol 1, Theory and technique. Collier Macmillan, New YorkGoogle Scholar
  4. 4.
    Guillaume R, Boissot N (2001) Resistance to Diaphania hyalinata (Lepidoptera: Crambidae) in Cucumis species. J Econ Entomol 94:719–723PubMedCrossRefGoogle Scholar
  5. 5.
    De Dias CS, Pico B, Espinos A, Nuez F (2004) Resistance to melon vine decline derived from Cucumis melo ssp. agrestis: genetic analysis of root structure and root response. Plant Breed 123:66–72CrossRefGoogle Scholar
  6. 6.
    Martinez L, Agüero CB, Galmarini CR (1997) Obtention of haploid plants by ovaries and ovules culture in onion (Allium cepa L.). Acta Hortic 433:447–454Google Scholar
  7. 7.
    Xynias IN, Zamani IA, Gouli-Vavdinoudi E, Roupakias DG (2001) Effect of cold pretreatment and incubation temperature on bread wheat (Triticum aestivum L.) anther culture. Cereal Res Commun 29:331–338Google Scholar
  8. 8.
    Weymann K, Urban K, Ellis DM, Novitzky R, Dunder E, Jayne S, Pace G (1993) Isolation of transgenic progeny of maize by embryo rescue under selective conditions. In Vitro Cell Dev Biol 29P:33–37Google Scholar
  9. 9.
    Eijlander R, Stiekema WJ (1994) Biological containment of potato (Solanum tuberosum) – outcrossing to the related wild-species black nightshade (Solanum nigrum) and bittersweet (Solanum dulcamara). Sex Plant Reprod 7:29–40CrossRefGoogle Scholar
  10. 10.
    Faure N, Serieys H, Kaan F, Berville A (2002) Partial hybridization in crosses between cultivated sunflower and the perennial Helianthus mollis: effect of in vitro culture compared to natural crosses. Plant Cell Rep 20:943–947CrossRefGoogle Scholar
  11. 11.
    Alemanno L, Guiderdoni E (1994) Increased doubled haploid plant-regeneration from rice (Oryza sativa L.) anthers cultured on colchicine-supplemented media. Plant Cell Rep 13:432–436CrossRefGoogle Scholar
  12. 12.
    Hoekstra S, Vanzijderveld MH, Louwerse JD, Heidekamp F, Vandermark F (1992) Anther and microspore culture of Hordeum vulgare L. cv Igri. Plant Sci 86:89–96CrossRefGoogle Scholar
  13. 13.
    Lotfi M, Alan AR, Henning MJ, Jahn MM, Earle ED (2003) Production of haploid and doubled haploid plants of melon (Cucumis melo L.) for use in breeding for multiple virus resistance. Plant Cell Rep 21:1121–1128PubMedCrossRefGoogle Scholar
  14. 14.
    Marcellan ON, Camadro EL (2000) Preliminary results on embryo rescue for ­circumventing hybridization barriers in Asparagus. Biocell 24:247–251PubMedGoogle Scholar
  15. 15.
    de Oliveira ACB, Maluf WR, Pinto JEBP, Azevedo SM (2003) Resistance to papaya ringspot virus in summer squash Cucurbita pepo L. introgressed from an interspecific C. pepo x C. moschata cross. Euphytica 132:211–215CrossRefGoogle Scholar
  16. 16.
    Ezura H, Kikuta I, Oosawa K (1994) Production of aneuploid melon plants following in vitro culture of seeds from a triploid x diploid cross. Plant Cell Tissue Organ Cult 38:61–63CrossRefGoogle Scholar
  17. 17.
    Beharav A, Cohen Y (1995) Effect of kinetin and GA3 on in vitro ovule embryo culture of Cucumis melo L. Plant Growth Regul 16:267–269CrossRefGoogle Scholar
  18. 18.
    Metwally EI, Moustafa SA, El-Sawy BI, Shalaby TA (1998) Haploid plantlets derived by anther culture of Cucurbita pepo. Plant Cell Tissue Organ Cult 52:171–176CrossRefGoogle Scholar
  19. 19.
    Sauton A (1988) Effect of season and genotype on gynogenetic haploid production in muskmelon, Cucumis melo L. Sci Hortic (Amsterdam) 35:71–75CrossRefGoogle Scholar
  20. 20.
    Metwally EI, Moustafa SA, El-Sawy BI, Haroun SA, Shalaby TA (1998) Production of haploid plants from in vitro culture of unpollinated ovules of Cucurbita pepo. Plant Cell Tissue Organ Cult 52:117–121CrossRefGoogle Scholar
  21. 21.
    Gémes-Juhász A, Balogh P, Ferenczy A, Kristóf Z (2002) Effect of optimal stage of female gametophyte and heat treatment on in vitro gynogenesis induction in cucumber (Cucumis sativus L.). Plant Cell Rep 21:105–111CrossRefGoogle Scholar
  22. 22.
    Norton JD (1981) Embryo culture of Cucumis species. HortScience 16:69Google Scholar
  23. 23.
    Dryanovska OA, Ilieva IN (1983) In vitro anther and ovule cultures in muskmelon (Cucumis melo L.). C R Acad Bulg Sci 36:1107–1110Google Scholar
  24. 24.
    Lazarte JE, Sasser CC (1982) Asexual embryogenesis and plantlet development in anther culture of Cucumis sativus L. HortScience 17:88Google Scholar
  25. 25.
    Przyborowski J, Niemirowicz-Szczytt K (1994) Main factors affecting cucumber (Cucumis sativus L.) haploid embryo development and haploid plant characteristics. Plant Breed 112:70–75CrossRefGoogle Scholar
  26. 26.
    Chen JF, Staub JE, Tashiro Y, Isshiki S, Miyazaki S (1997) Successful interspecific hybridization between Cucumis sativus L. and C. hystrix Chakr. Euphytica 96:413–419CrossRefGoogle Scholar
  27. 27.
    Malepszy S, Sarreb DA, Mackiewicz HO, Narkiewicz M (1998) Triploids in cucumber: I. Factors influencing embryo rescue efficiency. Gartenbauwissenschaft 63:34–37Google Scholar
  28. 28.
    Chen JF, Staub J, Adelberg J, Lewis S, Kunkle B (2002) Synthesis and preliminary characterization of a new species (amphidiploid) in Cucumis. Euphytica 123:315–322CrossRefGoogle Scholar
  29. 29.
    Ondrej V, Nvrátilová B, Lebeda A (2002) In vitro cultivation of Cucumis sativus ovules after fertilization. Acta Hortic 588:339–343Google Scholar
  30. 30.
    Chen J, Staub J, Qian C, Jiang J, Luo X, Zhuang F (2003) Reproduction and cytogenetic characterization of interspecific hybrids derived from Cucumis hystrix Chakr. x Cucumis sativus L. Theor Appl Genet 106:688–695PubMedGoogle Scholar
  31. 31.
    Ashok-Kumar HG, Murthy HN, Paek KY (2003) Embryogenesis and plant regeneration from anther cultures of Cucumis sativus L. Sci Hortic (Amsterdam) 98:213–222CrossRefGoogle Scholar
  32. 32.
    Gémes-Juhász A, Venczel G, Sági Z, Gajdos L, Zatykó L, Kristóf Z, Vági P (2006) Production of doubled haploid breeding lines in case of paprika, spice paprika, eggplant, cucumber, zucchini and onion. Acta Hortic 725:845–853Google Scholar
  33. 33.
    Dolcet-Sanjuan R, Claveria E, Garcia-Mas J (2006) Cucumber (Cucumis sativus L.) dihaploid line production using in vitro ­rescue of in vivo induced parthenogenic embryos. Acta Hortic 725:837–844Google Scholar
  34. 34.
    Nuñez-Palenius HG, Klee HJ, Cantliffe D (2006) Embryo rescue culture of the ‘Galia’ muskmelon (Cucumis melo L. var. reticulatus Ser.) male parental line. Plant Cell Tissue Organ Cult 85:345–352CrossRefGoogle Scholar
  35. 35.
    Skálová D, Dziechciarková M, Lebeda A, Navrátilová B, Krístková E (2007) Interspecific hybridization of C. anguria x C. zeyheri, C. sativus x C. melo, and C. sativus x C. metuliferus with the use of embryo cultures. Acta Hortic 731:77–82Google Scholar
  36. 36.
    Skálová D, Dziechciarková M, Lebeda A, Krístková E, Navrátilová B (2008) Interspecific hybridization of Cucumis anguria and C. zeyheri via embryo-rescue. Biol Plant 52:775–778CrossRefGoogle Scholar
  37. 37.
    Smiech M, Sztangret-Wisniewska J, Galecka T, Korzeniewska A, Marzec L, Kolakowska G, Piskurewicz U, Niemirowicz-Szczytt K (2008) Potential use of RAPD markers in characteristics of cucumber (Cucumis sativus L.) haploids and double-haploids. Acta Soc Bot Pol 77:29–34Google Scholar
  38. 38.
    Skálová D, Navratilova B, Lebeda A (2008) Embryo rescue of cucumber (Cucumis sativus), muskmelon (C. melo) and some wild Cucumis species (C. anguria, C. zeyheri, and C. metuliferus). J Appl Bot Food Qual 82:83–89Google Scholar
  39. 39.
    Mackiewicz HO, Malepszy S, Sarreb DA, Narkiewicz M (1998) Triploids in cucumber: II. Characterization of embryo rescue plants. Gartenbauwissenschaft 63:125–129Google Scholar
  40. 40.
    Kumar HGA, Murthy HN, Paek KY (2003) Embryogenesis and plant regeneration from anther cultures of Cucumis sativus L. Sci Hortic (Amsterdam) 98:213–222CrossRefGoogle Scholar
  41. 41.
    Ondrej V, Navratilova B, Lebeda A (2002) Influence of GA3 on the zygotic embryogenesis of Cucumis species in vitro. Biologia 57:523–525Google Scholar
  42. 42.
    Ezura H, Amagai H, Oosawa K (1993) Efficient production of triploid melon plants by in-vitro culture of abnormal embryos excised from dried seeds of diploid x tetraploid crosses and their characteristics. Jpn J Breed 43:193–199Google Scholar
  43. 43.
    Cuny F, Grotte M, Devaulx RD, Rieu A (1993) Effects of gamma-irradiation of pollen on parthenogenetic haploid production in muskmelon (Cucumis melo L.). Environ Exp Bot 33:301–312CrossRefGoogle Scholar
  44. 44.
    Diao WP, Jia YY, Song H, Zhang XQ, Lou QF, Chen JF (2009) Efficient embryo induction in cucumber ovary culture and homozygous identification of the regenerants using SSR markers. Sci Hortic (Amsterdam) 119:246–251CrossRefGoogle Scholar
  45. 45.
    Robinson RW, Decker-Walters DS (1999) Cucurbits. CAB International, Wallingford, NYGoogle Scholar
  46. 46.
    Kuzuya M, Hosoya K, Hayato-Masuya Y, Ezura H (2000) Histological observations of powdery mildew resistance in diploid and haploid melons. Acta Hortic 510:71–75Google Scholar
  47. 47.
    Kuzuya M, Hosoya K, Tomita K, Ezura H (2002) Selection of powdery mildew resistance among haploid plants generated from hybrids of resistant and susceptible melon genotypes. Acta Hortic 588:331–338Google Scholar
  48. 48.
    Kuzuya M, Hosoya K, Yashiro K, Tomita K, Ezura H (2003) Powdery mildew (Sphaerotheca fuliginia) resistance in melon is selectable at the haploid level. J Exp Bot 54:1069–1074PubMedCrossRefGoogle Scholar
  49. 49.
    Ficcadenti N, Sestili S, Annibali S, Campanelli G, Belisario A, Maccaroni M, Corazza L (2002) Resistance to Fusarium oxysporum f. sp. melonis race 1, 2 in muskmelon lines Nad-1 and Nad-2. Plant Dis 86:897–900CrossRefGoogle Scholar

Copyright information

© Humana Press 2011

Authors and Affiliations

  • Hector Gordon Nuñez-Palenius
    • 1
  • Rafael Ramírez-Malagón
    • 2
  • Neftalí Ochoa-Alejo
    • 1
  1. 1.Departamento de Ingeniería Genética de PlantasCentro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav)-Unidad IrapuatoIrapuatoMexico
  2. 2.Departamento de Agronomía. División de Ciencias de la Vida, Campus Irapuato-SalamancaUniversidad de GuanajuatoIrapuatoMéxico

Personalised recommendations