Skip to main content

Processing and Modeling of Nuclear Magnetic Resonance (NMR) Metabolic Profiles

  • Protocol
  • First Online:
Metabolic Profiling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 708))

Abstract

Modern nuclear magnetic resonance (NMR) spectroscopy generates complex and information-rich metabolic profiles. These require robust, accurate, and often sophisticated statistical techniques to yield the maximum meaningful knowledge. In this chapter, we describe methods typically used to analyze such data. We begin by describing seven goals of metabolic profile analysis, ranging from production of a data table to multi-omic integration for systems biology. Methods for preprocessing and pretreatment are then presented, including issues such as instrument-level spectral processing, data reduction and deconvolution, normalization, scaling, and transformations of the data. We then discuss methods for exploratory modeling and exemplify three techniques: principal components analysis, hierarchical clustering, and self-organizing maps. Moving to predictive modeling, we focus our discussion on partial least squares regression, orthogonal partial least squares regression, and genetic algorithm approaches. A typical set of in vitro metabolic profiles is used where possible to compare and contrast the methods. The importance of validating statistical models is highlighted, and standard techniques for doing so, such as training/test set and cross-validation are described. Finally, we discuss the contributions of statistical techniques such as statistical total correlation spectroscopy, and other correlation-based methods have made to the process of structural characterization for unknown metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lindon, J. C., et al. (2005) The consortium for metabonomic toxicology (COMET): aims, activities and achievements. Pharmacogenomics 6, 691–699.

    Article  PubMed  CAS  Google Scholar 

  2. Ebbels, T. M. D. et al. (2007) Prediction and classification of drug toxicity using probabilistic modeling of temporal metabolic data: the consortium on metabonomic toxicology screening approach. J Proteome Res 6, 4407–4422.

    Article  PubMed  CAS  Google Scholar 

  3. Ellis, J. K. et al (2009) Effect of the histone deacetylase inhibitor trichostatin a on the metabolome of cultured primary hepatocytes. J Proteome Res 9(1), 413–419.

    Google Scholar 

  4. Claridge, T. D. W. (2009) High-resolution NMR techniques in organic chemistry, in (Baldwin, J., Williams, R. M., Backvall, J.-E., eds.), Tetrahedron Organic Chemistry, 2nd ed., Vol. 27, Elsevier Science, Amsterdam, p. 398.

    Google Scholar 

  5. Nicholson, J. K., et al. (1989) High-resolution proton magnetic-resonance spectroscopy of biological-fluids. Prog Nucl Magn Reson Spectrosc 21, 449–501.

    Article  CAS  Google Scholar 

  6. Lindon, J. C., et al. (2001) Pattern recognition methods and applications in biomedical magnetic resonance. Prog Nucl Magn Reson Spectrosc 39, 1.

    Article  CAS  Google Scholar 

  7. Weljie, A. M., et al. (2006) Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal Chem 78, 4430–4442.

    Article  PubMed  CAS  Google Scholar 

  8. Lewis, I. A., et al. (2007) Method for determining molar concentrations of metabolites in complex solutions from two-dimensional H-1-C-13 NMR spectra. Anal Chem 79, 9385–9390.

    Article  PubMed  CAS  Google Scholar 

  9. Cloarec, O., et al. (2005) Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift variability and improved visualization of biomarker changes in 1 h NMR spectroscopic metabonomic studies. Anal Chem 77, 517.

    Article  PubMed  CAS  Google Scholar 

  10. Holmes, E., et al. (1994) Automatic data reduction and pattern-recognition methods for analysis of 1H nuclear-magnetic-resonance spectra of human urine from normal and pathological states. Anal Biochem 220, 284.

    Article  PubMed  CAS  Google Scholar 

  11. Spraul, M., et al. (1994) Automatic reduction of NMR spectroscopic data for statistical and pattern recognition classification of samples. J Pharm Biomed Anal 12, 1215–1225.

    Article  PubMed  CAS  Google Scholar 

  12. Ebbels, T. M. D. et al. (2004) Methods for Spectral Analysis and Their Applications: Spectral Replacement, United States.

    Google Scholar 

  13. Antoine, J. -P., et al. (2000) Water peak suppression: time-frequency vs time-scale approach. J Magn Res 144, 189–194.

    Article  CAS  Google Scholar 

  14. Csenki, L., et al. (2007) Proof of principle of a generalized fuzzy hough transform approach to peak alignment of one-dimensional 1 h NMR data. Anal Bioanal Chem 389, 875–885.

    Article  PubMed  CAS  Google Scholar 

  15. Veselkov, K., et al. (2009) Recursive segment-wise peak alignment of biological 1 h NMR spectra for improved metabolic biomarker recovery. Anal Chem 81, 56–66.

    Article  PubMed  CAS  Google Scholar 

  16. Craig, A., et al. (2006) Scaling and normalization effects in NMR spectroscopic metabonomic data sets. Anal Chem 78, 2262–2267.

    Article  PubMed  CAS  Google Scholar 

  17. Dieterle, F., et al. (2006) Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in H-1 NMR metabonomics. Anal Chem 78, 4281–4290.

    Article  PubMed  CAS  Google Scholar 

  18. Torgrip, R. J. O., et al. (2008) A note on normalization of biofluid 1d H-1-NMR data. Metabolomics 4, 114–121.

    Article  CAS  Google Scholar 

  19. Durbin, B. P., et al. (2002) A variance-stabilizing transformation for gene-expression microarray data. Bioinformatics 18 (Suppl 1), S105–S110.

    Article  PubMed  Google Scholar 

  20. Wold, H. (1966) Estimation of principal components and related models by iterative least squares, in (Krishnaiaah, P. R., Ed.), Multivariate Analysis, Academic, New York, NY, pp. 391–420.

    Google Scholar 

  21. Duda, R. O., et al. (2000) Pattern Classification, 2nd ed, Wiley, New York, NY, p. 680.

    Google Scholar 

  22. Kohonen, T. (1990) The self-organizing map. Proc IEEE 78, 1464.

    Article  Google Scholar 

  23. Kohonen, T. (2001) Self-organizing maps, in (Huang, T. S., Kohonen, T., Schroeder, M. R., eds), Springer Series in Information Sciences, 3 ed, Springer, New York, NY, p. 501.

    Google Scholar 

  24. Wold, S., et al. (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58, 109–130.

    Article  CAS  Google Scholar 

  25. Höskuldsson, A. (1988) PLS regression methods. J Chemom 2, 211–228.

    Article  Google Scholar 

  26. Trygg, J., et al. (2002) Orthogonal projections to latent structures (O-PLS). J Chemom 16, 119–128.

    Article  CAS  Google Scholar 

  27. Wiklund, S. et al. (2007) Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal Chem 80, 115–122.

    Article  PubMed  Google Scholar 

  28. Mitchell, M. (1996) An Introduction to Genetic Algorithms, MIT Press, Cambridge, MA, p. 205.

    Google Scholar 

  29. Cavill, R., et al. (2009) Genetic algorithms for simultaneous variable and sample selection in metabonomics. Bioinformatics 25, 112–118.

    Article  PubMed  CAS  Google Scholar 

  30. Noda, I. (1990) 2-Dimensional infrared (2d ir) spectroscopy – theory and applications. Appl Spectrosc 44, 550–561.

    Article  CAS  Google Scholar 

  31. Cloarec, O., et al. (2005) Statistical total correlation spectroscopy: an exploratory approach for latent biomarker identification from metabolic 1H NMR data sets. Anal Chem 77, 1282.

    Article  PubMed  CAS  Google Scholar 

  32. Couto Alves, A., et al. (2009) Analytic properties of statistical total correlation spectroscopy (STOCSY) based information recovery in 1 h NMR metabolic data sets. Anal Chem 81, 2075–2084.

    Article  CAS  Google Scholar 

  33. Cloarec, O., et al. (2007) Virtual chromatographic resolution enhancement in cryoflow LC-NMR experiments via statistical total correlation spectroscopy. Anal Chem 79, 3304–3311.

    Article  PubMed  CAS  Google Scholar 

  34. Smith, L. M., et al. (2007) Statistical correlation and projection methods for improved information recovery from diffusion-edited NMR spectra of biological samples. Anal Chem 79, 5682–5689.

    Article  PubMed  CAS  Google Scholar 

  35. Coen, M., et al. (2007) Heteronuclear 1 h–31p statistical total correlation NMR spectroscopy of intact liver for metabolic biomarker assignment: application to galactosamine-induced hepatotoxicity. Anal Chem 79, 8956–8966.

    Article  PubMed  CAS  Google Scholar 

  36. Keun, H. C., et al. (2008) Heteronuclear 19f-1 h statistical total correlation spectroscopy as a tool in drug metabolism: study of flucloxacillin biotransformation. Anal Chem 80, 1073–1079.

    Article  PubMed  CAS  Google Scholar 

  37. Wang, Y., et al. (2008) Magic angle spinning NMR and 1 h–31p heteronuclear statistical total correlation spectroscopy of intact human gut biopsies. Anal Chem 80, 1058–1066.

    Article  PubMed  CAS  Google Scholar 

  38. Crockford, D. J., et al. (2006) Statistical heterospectroscopy, an approach to the integrated analysis of NMR and UPLC-MS data sets: application in metabonomic toxicology studies. Anal Chem 78, 363–371.

    Article  PubMed  CAS  Google Scholar 

  39. Robinette, S. L., et al. (2009) Cluster analysis statistical spectroscopy using nuclear magnetic resonance generated metabolic data sets from perturbed biological systems. Anal Chem 81, 6581–6589.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The members of the Consortium on Metabonomic Toxicology and of the EU Framework Programme 6 integrated project CARCINOGENOMICS (contract no. PL037712) are acknowledged for the data used to demonstrate methods in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy M.D. Ebbels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ebbels, T.M., Lindon, J.C., Coen, M. (2011). Processing and Modeling of Nuclear Magnetic Resonance (NMR) Metabolic Profiles. In: Metz, T. (eds) Metabolic Profiling. Methods in Molecular Biology, vol 708. Humana Press. https://doi.org/10.1007/978-1-61737-985-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-985-7_21

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61737-984-0

  • Online ISBN: 978-1-61737-985-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics