Skip to main content

Monitoring Murine Skeletal Muscle Function for Muscle Gene Therapy

  • Protocol
  • First Online:
Muscle Gene Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 709))

Abstract

The primary function of skeletal muscle is to generate force. Muscle force production is compromised in various forms of acquired and/or inherited muscle diseases. An important goal of muscle gene therapy is to recover muscle strength. Genetically engineered mice and spontaneous mouse mutants are readily available for preclinical muscle gene therapy studies. In this chapter, we outlined the methods commonly used for measuring murine skeletal muscle function. These include ex vivo and in situ analysis of the contractile profile of a single intact limb muscle (the extensor digitorium longus for ex vivo assay and the tibialis anterior muscle for in situ assay), grip force analysis, and downhill treadmill exercise. Force measurement in a single muscle is extremely useful for pilot testing of new gene therapy protocols by local gene transfer. Grip force and treadmill assessments offer body-wide evaluation following systemic muscle gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clark, K. A., McElhinny, A. S., Beckerle, M. C., and Gregorio, C. C. (2002) Striated muscle cytoarchitecture: an intricate web of form and function. Annu Rev Cell Dev Biol 18, 637–706.

    Article  PubMed  CAS  Google Scholar 

  2. Huijing, P. A. (1999) Muscle as a collagen fiber reinforced composite: a review of force transmission in muscle and whole limb. J Biomech 32, 329–345.

    Article  PubMed  CAS  Google Scholar 

  3. Grounds, M. D., Sorokin, L., and White, J. (2005) Strength at the extracellular matrix-muscle interface. Scand J Med Sci Sports 15, 381–391.

    Article  PubMed  CAS  Google Scholar 

  4. Burkin, D. J., and Kaufman, S. J. (1999) The alpha7beta1 integrin in muscle development and disease. Cell Tissue Res 296, 183–190.

    Article  PubMed  CAS  Google Scholar 

  5. Ervasti, J. M., and Sonnemann, K. J. (2008) Biology of the striated muscle dystrophin-glycoprotein complex. Int Rev Cytol 265, 191–225.

    Article  PubMed  CAS  Google Scholar 

  6. Campbell, K. P. (1995) Three muscular dystrophies: loss of cytoskeleton-extracellular matrix linkage. Cell 80, 675–679.

    Article  PubMed  CAS  Google Scholar 

  7. Bostick, B., Yue, Y., Long, C., Marschalk, N., Fine, D. M., Chen, J., and Duan, D. (2009) Cardiac expression of a mini-dystrophin that normalizes skeletal muscle force only partially restores heart function in aged Mdx mice. Mol Ther 17, 253–261.

    Article  PubMed  CAS  Google Scholar 

  8. Dellorusso, C., Crawford, R. W., Chamberlain, J. S., and Brooks, S. V. (2001) Tibialis anterior muscles in mdx mice are highly susceptible to contraction-induced injury. J Muscle Res Cell Motil 22, 467–475.

    Article  PubMed  CAS  Google Scholar 

  9. Harper, S. Q., Hauser, M. A., DelloRusso, C., Duan, D., Crawford, R. W., Phelps, S. F., Harper, H. A., Robinson, A. S., Engelhardt, J. F., Brooks, S. V., and Chamberlain, J. S. (2002) Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular. Nat Med 8, 253–261.

    Article  PubMed  CAS  Google Scholar 

  10. Liu, M., Yue, Y., Harper, S. Q., Grange, R. W., Chamberlain, J. S., and Duan, D. (2005) Adeno-associated virus-mediated microdystrophin expression protects young mdx muscle from contraction-induced injury. Mol Ther 11, 245–256.

    Article  PubMed  CAS  Google Scholar 

  11. Li, D., Yue, Y., and Duan, D. (2008) Preservation of muscle force in mdx3cv mice correlates with low-level expression of a near full-length dystrophin protein. Am J Pathol 172, 1332–1341.

    Article  PubMed  CAS  Google Scholar 

  12. Li, D., Lai, Y., Yue, Y., Rabinovitch, P. S., Hakim, C., and Duan, D. (2009) Ectopic catalase expression in mitochondria by adeno-associated virus enhances exercise performance in mice. PLoS ONE 4, e6673.

    Article  PubMed  Google Scholar 

  13. Brooks, S. V., and Faulkner, J. A. (1988) Contractile properties of skeletal muscles from young, adult and aged mice. J Physiol 404, 71–82.

    PubMed  CAS  Google Scholar 

  14. Burkholder, T. J., Fingado, B., Baron, S., and Lieber, R. L. (1994) Relationship between muscle fiber types and sizes and muscle architectural properties in the mouse hindlimb. J Morphol 221, 177–190.

    Article  PubMed  CAS  Google Scholar 

  15. Ebihara, S., Guibinga, G. H., Gilbert, R., Nalbantoglu, J., Massie, B., Karpati, G., and Petrof, B. J. (2000) Differential effects of dystrophin and utrophin gene transfer in immunocompetent muscular dystrophy (mdx) mice. Physiol Genomics 3, 133–144.

    PubMed  CAS  Google Scholar 

  16. Lynch, G. S., Hinkle, R. T., Chamberlain, J. S., Brooks, S. V., and Faulkner, J. A. (2001) Force and power output of fast and slow skeletal muscles from mdx mice 6-28 months old. J Physiol 535, 591–600.

    Article  PubMed  CAS  Google Scholar 

  17. Eu, J. P., Hare, J. M., Hess, D. T., Skaf, M., Sun, J., Cardenas-Navina, I., Sun, Q. A., Dewhirst, M., Meissner, G., and Stamler, J. S. (2003) Concerted regulation of skeletal muscle contractility by oxygen tension and endogenous nitric oxide. Proc Natl Acad Sci U S A 100, 15229–15234.

    Article  PubMed  CAS  Google Scholar 

  18. Faulkner, J. A., Zerba, E., and Brooks, S. V. (1990) Muscle temperature of mammals: cooling impairs most functional properties. Am J Physiol 259, R259–R265.

    PubMed  CAS  Google Scholar 

  19. Segal, S. S., Faulkner, J. A., and White, T. P. (1986) Skeletal muscle fatigue in vitro is temperature dependent. J Appl Physiol 61, 660–665.

    PubMed  CAS  Google Scholar 

  20. Grange, R. W., Gainer, T. G., Marschner, K. M., Talmadge, R. J., and Stull, J. T. (2002) Fast-twitch skeletal muscles of dystrophic mouse pups are resistant to injury from acute mechanical stress. Am J Physiol Cell Physiol 283, C1090–C1101.

    PubMed  CAS  Google Scholar 

  21. Lightfoot, J. T., Turner, M. J., Debate, K. A., and Kleeberger, S. R. (2001) Interstrain variation in murine aerobic capacity. Med Sci Sports Exerc 33, 2053–2057.

    Article  PubMed  CAS  Google Scholar 

  22. Handschin, C., Summermatter, S., LeBrasseur, N. K., Lin, J., and Spiegelman, B. M. (2010) For a pragmatic approach to exercise studies. J Appl Physiol 108, 223–223; author reply 26.

    Google Scholar 

  23. Booth, F. W., Laye, M. J., and Spangenburg, E. E. (2010) Gold standards for scientists who are conducting animal-based exercise studies. J Appl Physiol 108, 219–221.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The studies are supported by grants from the National Institutes of Health AR-49419 and the Muscular Dystrophy Association. We thank Drs. Rob Grange, Frank Booth, Steve Yang, and Ron Terjung for helpful discussion during the protocol development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongsheng Duan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hakim, C.H., Li, D., Duan, D. (2011). Monitoring Murine Skeletal Muscle Function for Muscle Gene Therapy. In: Duan, D. (eds) Muscle Gene Therapy. Methods in Molecular Biology, vol 709. Humana Press. https://doi.org/10.1007/978-1-61737-982-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-982-6_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61737-981-9

  • Online ISBN: 978-1-61737-982-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics