Skip to main content

High-Throughput Immunofluorescence Microscopy Using Yeast Spheroplast Cell-Based Microarrays

  • Protocol
  • First Online:
Cell-Based Microarrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 706))

Abstract

We have described a protocol for performing high-throughput immunofluorescence microscopy on microarrays of yeast cells. This approach employs immunostaining of spheroplasted yeast cells printed as high-density cell microarrays, followed by imaging using automated microscopy. A yeast spheroplast microarray can contain more than 5,000 printed spots, each containing cells from a given yeast strain, and is thus suitable for genome-wide screens focusing on single cell phenotypes, such as systematic localization or co-localization studies or genetic assays for genes affecting probed targets. We demonstrate the use of yeast spheroplast microarrays to probe microtubule and spindle defects across a collection of yeast strains harboring tetracycline-down-regulatable alleles of essential genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lockhart, D. J., Winzeler, E. A. (2000) Genomics, gene expression and DNA arrays. Nature 405, 827–836.

    Article  CAS  PubMed  Google Scholar 

  2. Aebersold, R., Mann, M. (2003) Mass spectrometry-based proteomics. Nature 422, 198–207.

    Article  CAS  PubMed  Google Scholar 

  3. Levsky, J. M., Shenoy, S. M., Pezo, R. C., Singer, R. H. (2002) Single-cell gene expression profiling. Science 297, 836–840.

    Article  CAS  PubMed  Google Scholar 

  4. Narayanaswamy, R., Niu, W., Scouras, A. D., Hart, G. T., Davies, J., Ellington, A. D., Iyer, V. R., Marcotte, E. M. (2006) Systematic profiling of cellular phenotypes with spotted cell microarrays reveals mating-pheromone response genes. Genome Biol 7, R6.

    Article  PubMed  Google Scholar 

  5. Davierwala, A. P., Haynes, J., Li, Z., Brost, R. L., Robinson, M. D., Yu, L., Mnaimneh, S., Ding, H., Zhu, H., Chen, Y., et al. (2005) The synthetic genetic interaction spectrum of essential genes. Nat Genet 37, 1147–1152.

    Article  CAS  PubMed  Google Scholar 

  6. Winsor, B., Schiebel, E. (1997) Review: an overview of the Saccharomyces cerevisiae microtubule and microfilament cytoskeleton. Yeast 13, 399–434.

    Article  CAS  PubMed  Google Scholar 

  7. Kilmartin, J. V., Adams, A. E. (1984) Structural rearrangements of tubulin and actin during the cell cycle of the yeast saccharomyces. J Cell Biol 98, 922–933.

    Article  CAS  PubMed  Google Scholar 

  8. Knop, M., Pereira, G., Schiebel, E. (1999) Microtubule organization by the budding yeast spindle pole body. Biol Cell 91, 291–304.

    Article  CAS  PubMed  Google Scholar 

  9. Zheng, L., Chen, Y., Lee, W. H. (1999) Hec1p, an evolutionarily conserved coiled-coil protein, modulates chromosome segregation through interaction with SMC proteins. Mol Cell Biol 19, 5417–5428.

    CAS  PubMed  Google Scholar 

  10. Wigge, P. A., Kilmartin, J. V. (2001) The ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation. J Cell Biol 152, 349–360.

    Article  CAS  PubMed  Google Scholar 

  11. Burke, D., Dawson, D., Stearns, T. (2000) Methods in Yeast Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the N.S.F., N.I.H., and Welch (F-1515) and Packard Foundations to E.M.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward M. Marcotte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Niu, W., Hart, G.T., Marcotte, E.M. (2011). High-Throughput Immunofluorescence Microscopy Using Yeast Spheroplast Cell-Based Microarrays. In: Palmer, E. (eds) Cell-Based Microarrays. Methods in Molecular Biology, vol 706. Humana Press. https://doi.org/10.1007/978-1-61737-970-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-970-3_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61737-969-7

  • Online ISBN: 978-1-61737-970-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics