Skip to main content

Semi-synthesis of Glycoproteins from E. coliThrough Native Chemical Ligation

  • Protocol
  • First Online:
Heterologous Gene Expression in E.coli

Part of the book series: Methods in Molecular Biology ((MIMB,volume 705))

Abstract

Sufficient quantities of homogeneous samples of post-translationally modified proteins are often not readily available from biological sources to facilitate structure–function investigations. Native chemical ligation (NCL) is a convenient method for the production of biologically active proteins from smaller fragments. Such an approach allows protein modifications to be introduced in a controlled fashion into smaller peptide fragments which are amenable to total chemical synthesis. These fragments of defined sequence and structure can be elaborated to full-length proteins through NCL reactions with suitable components derived from bacterial origin. This report describes methods for the bacterial production of components for NCL and their use in typical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spiro, R. G. (2002) Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12, 43R–56R.

    Article  PubMed  CAS  Google Scholar 

  2. Macmillan, D., Daines, A. M. (2003) Recent developments in the synthesis and discovery of oligosaccharides and glycoconjugates for the treatment of disease. Curr Med Chem 10, 2733–2773.

    Article  PubMed  CAS  Google Scholar 

  3. Wu, B., Chen, J., Warren, J. D., Chen, G., Hua, Z., Danishefsky, S. J. (2006) Building complex glycopeptides: development of a cysteine-free native chemical ligation protocol. Angew Chem Int Ed 45(25), 4116–4125.

    Article  CAS  Google Scholar 

  4. Chen, J., Chen, G., Wu, B., Wan, Q., Tan, Z., Hua, Z., Danishefsky, S. J. (2006) Mature homogeneous erythropoietin-level building blocks by chemical synthesis: the EPO 114-166 glycopeptide domain, presenting the O-linked glycophorin. Tetrahedron Lett 47, 8013.

    Article  PubMed  CAS  Google Scholar 

  5. Wu, B., Tan, Z., Chen, G., Chen, J., Hua, Z., Wan, Q., Ranganathan, K., Danishefsky, S. J. (2006) Mature homogeneous erythropoietin building blocks by chemical synthesis: the EPO 22-37 glycopeptide domain presenting the full N-linked dodecasaccharide. Tetrahedron Lett 47, 8009

    Article  CAS  Google Scholar 

  6. Dziadek, S., Griesinger, C., Kunz, H., Reinscheid, U. M. (2006) Synthesis and structural model of an α(2,6)-sialyl-T glycosylated MUC1 eicosapeptide under physiological conditions. Chem Eur J 12, 4981–4993.

    Article  PubMed  CAS  Google Scholar 

  7. Schuberth, R., Unverzagt, C. (2005) Synthesis of a N-glycan nonasaccharide of the bisecting type with additional core-fucose. Tetrahedron Lett 46, 4201.

    Article  CAS  Google Scholar 

  8. Matsuo, I., Totani, K., Tatami, A., Ito, Y. (2006) Comprehensive synthesis of ER related high-mannose-type sugar chains by convergent strategy. Tetrahedron 62, 8262.

    Article  CAS  Google Scholar 

  9. Adams, E. W., Ratner, D. M., Bokesch, H. R., McMahon, J. B., O'Keefe, B. R., Seeberger, P. H. (2004) Oligosaccharide and glycoprotein microarrays as tools in HIV glycobiology: glycan-dependent gp120/protein interactions. Chem Biol 11, 875–881.

    Article  PubMed  CAS  Google Scholar 

  10. Ratner, D. M., Swanson, E. R., Seeberger, P. H. (2003) Automated synthesis of a protected N-linked glycoprotein core pentasaccharide. Org Lett 5, 4717–4720.

    Article  PubMed  CAS  Google Scholar 

  11. Bill, R. M., Flitsch, S. L. (1996) Chemical and biological approaches to glycoprotein synthesis. Chem Biol 3, 145–149.

    Article  PubMed  CAS  Google Scholar 

  12. Macmillan, D., Bill, R. M., Sage, K. A., Fern, D., Flitsch, S. L. (2001) Selective in vitro glycosylation of recombinant proteins: semi-synthesis of novel homogeneous glycoforms of human erythropoietin. Chem Biol 8, 133–145.

    Article  PubMed  CAS  Google Scholar 

  13. Davis, N. J., Flitsch, S. L. (1991) A novel method for the specific glycosylation of proteins. Tetrahedron Lett 32, 6793–6796.

    Article  CAS  Google Scholar 

  14. Gamblin, D. P., Scanlan, E. M., and Davis, B. G. (2009). Glycoprotein Synthesis: An Update. Chem Rev 109, 131–163.

    Article  PubMed  CAS  Google Scholar 

  15. Buskas, T., Ingale, S., Boons, G.-J. (2006) Glycopeptides as versatile tools for glycobiology. Glycobiology 16, 113R–136R.

    Article  PubMed  CAS  Google Scholar 

  16. Baneyx, F. (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10, 411–421.

    Article  PubMed  CAS  Google Scholar 

  17. Hollister, J. R., Jarvis, D. L. (2001) Engineering lepidopteran insect cells for sialoglycoprotein production by genetic transformation with mammalian beta 1,4-galactosyltransferase and alpha 2,6-sialyltransferase genes. Glycobiology 11, 1–9.

    Article  PubMed  CAS  Google Scholar 

  18. Jarvis, D. L., Kawar, Z. S., Hollister, J. R. (1998) Engineering N-glycosylation pathways in the baculovirus-insect cell system. Curr Opin Biotechnol 9, 528–533.

    Article  PubMed  CAS  Google Scholar 

  19. Wu, X., and Schultz, P.G. (2009). Synthesis at the Interface of Chemistry and Biology. J Amer Chem Soc 131, 12497.

    CAS  Google Scholar 

  20. Wacker, M., Linton, D., Hitchen, P. G., Nita-Lazar, M., Haslam, S. M., North, S. J., Panico, M., Morris, H. R., Dell, A., Wren, B. W., Aebi, M. (2002) N-Linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298, 1790–1793.

    Article  PubMed  CAS  Google Scholar 

  21. Zhang, Z., Gildersleeve, J., Yang, Y.-Y., Xu, R., Loo, J. A., Uryu, S., Wong, C.-H., Schultz, P. G. (2004) A new strategy for the synthesis of glycoproteins. Science 303, 371–373.

    Article  PubMed  CAS  Google Scholar 

  22. Dawson, P. E., Muir, T. W., Clark-Lewis, I., Kent, S. B. (1994) Synthesis of proteins by native chemical ligation. Science 266, 776–779.

    Article  PubMed  CAS  Google Scholar 

  23. Mezzato, S., Schaffrath, M., Unverzagt, C. (2005) An orthogonal double-linker resin facilitates the efficient solid-phase synthesis of complex-type N-glycopeptide thioesters suitable for native chemical ligation. Angew Chem Int Ed 44, 1650–1654.

    Article  CAS  Google Scholar 

  24. Hojo, H., Matsumoto, Y., Nakahara, Y., Ito, E., Suzuki, Y., Suzuki, M., Suzuki, A., Nakahara, Y. (2005) Chemical synthesis of 23 kDa glycoprotein by repetitive segment condensation: a synthesis of MUC2 basal motif carrying multiple O-GalNAc moieties. J Am Chem Soc 127, 13720–13725.

    Article  PubMed  CAS  Google Scholar 

  25. Macmillan, D., Bertozzi, C. R. (2004) Modular assembly of glycoproteins: towards the synthesis of GlyCAM-1 by using expressed protein ligation. Angew Chem Int Ed 43, 1355–1359.

    Article  CAS  Google Scholar 

  26. Yamamoto, N., Tanabe, Y., Okamoto, R., Dawson, P. E., Kajihara, Y. (2008) Chemical synthesis of a glycoprotein having an Intact human complex-type sialyloligosaccharide under the Boc and Fmoc synthetic strategies. J Am Chem Soc 130, 501–510.

    Article  PubMed  CAS  Google Scholar 

  27. Severinov, K., Muir, T. W. (1998) Expressed protein ligation, a novel method for studying protein-protein interactions in transcription. J Biol Chem 273, 16205–16209.

    Article  PubMed  CAS  Google Scholar 

  28. Pellois, J.-P., Muir, T. W. (2006) Semisynthetic proteins in mechanistic studies: using chemistry to go where nature can't. Curr Opin Chem Biol 10, 487.

    Article  PubMed  CAS  Google Scholar 

  29. Chong, S., et al. (1997) Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene 192(2), 271.

    Article  PubMed  CAS  Google Scholar 

  30. Brik, A., Ficht, S., Wong, C.-H. (2006) Strategies for the preparation of homogenous glycoproteins. Curr Opin Chem Biol 10(6), 638.

    Article  PubMed  CAS  Google Scholar 

  31. Li, B., Song, H., Hauser, S., Wang, L. X. (2006) A highly efficient chemoenzymatic approach toward glycoprotein synthesis. Org Lett 8(14), 3081–3084.

    Article  PubMed  CAS  Google Scholar 

  32. Evans, T. C., Jr., et al. (1998) Semisynthesis of cytotoxic proteins using a modified protein splicing element. Protein Sci 7(11), 2256.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from The Royal Society and The Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek Macmillan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Richardson, J.P., Macmillan, D. (2011). Semi-synthesis of Glycoproteins from E. coliThrough Native Chemical Ligation. In: Evans, Jr., T., Xu, MQ. (eds) Heterologous Gene Expression in E.coli. Methods in Molecular Biology, vol 705. Humana Press. https://doi.org/10.1007/978-1-61737-967-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-967-3_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61737-966-6

  • Online ISBN: 978-1-61737-967-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics