Skip to main content

Detection of Protein–Protein Interactions in Bacteria by GFP-Fragment Reconstitution

  • Protocol
  • First Online:
Heterologous Gene Expression in E.coli

Part of the book series: Methods in Molecular Biology ((MIMB,volume 705))

Abstract

Protein–protein interaction is one of the most pivotal roles of proteins in living organisms. Association/dissociation of proteins reflects responses to intrinsic or extrinsic perturbations of signaling pathways, involved in gene expression, cell division, cell differentiation, and apoptosis. For further understanding of the biological processes, it is important to monitor protein–protein interactions in model organisms. In particular, Escherichia coli-based methods are suitable to assess large libraries of proteins. Many of these proteins cannot be used in yeast due to toxicity or poor expression. Herein we describe a general method based on an intein-mediated protein reconstitution system (PRS) to detect protein–protein interactions in bacterial cells. The PRS-based approach requires no other agents including enzymes, substrates, and ATP. Another advantage is that matured green fluorescent protein (GFP) accumulates in a targeted cell till degraded. These allow highly sensitive screening of protein–protein interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blattner, F. R., Plunkett, G., Bloch, C. A., et al. (1997) The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1474.

    Article  PubMed  CAS  Google Scholar 

  2. Goffeau, A., Barrell, B. G., Bussey, H., et al. (1996) Life with 6000 genes. Science 274, 546–567.

    Article  PubMed  CAS  Google Scholar 

  3. The C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018.

    Google Scholar 

  4. Arabidopsis Genome, I. (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.

    Article  Google Scholar 

  5. Adams, M. D., Celniker, S. E., Holt, R. A., et al. (2000) The genome sequence of Drosophila melanogaster. Science 287, 2185–2195.

    Article  PubMed  Google Scholar 

  6. International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431, 931–945.

    Google Scholar 

  7. Walhout, A. J. M., Vidal, M. (2001) Protein interaction maps for model organisms. Nat Rev Mol Cell Biol 2, 55–62.

    Article  PubMed  CAS  Google Scholar 

  8. Johnsson, N., Varshavsky, A. (1994) Split ubiquitin as a sensor of protein interactions in-vivo. Proc Natl Acad Sci USA 91, 10340–10344.

    Article  PubMed  CAS  Google Scholar 

  9. Stagljar, I., Korostensky, C., Johnsson, N., te Heesen, S. (1998) A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc Natl Acad Sci USA 95, 5187–5192.

    Article  PubMed  CAS  Google Scholar 

  10. Dunnwald, M., Varshavsky, A., Johnsson, N. (1999) Detection of transient in vivo interactions between substrate and transporter during protein translocation into the endoplasmic reticulum. Mol Biol Cell 10, 329–344.

    PubMed  CAS  Google Scholar 

  11. Remy, I., Michnick, S. W. (1999) Clonal selection and in vivo quantitation of protein interactions with protein-fragment complementation assays. Proc Natl Acad Sci USA 96, 5394–5399.

    Article  PubMed  CAS  Google Scholar 

  12. Pelletier, J. N., Arndt, K. M., Pluckthun, A., Michnick, S. W. (1999) An in vivo library-versus-library selection of optimized protein-protein interactions. Nat Biotechnol 17, 683–690.

    Article  PubMed  CAS  Google Scholar 

  13. Rossi, F., Charlton, C. A., Blau, H. M. (1997) Monitoring protein–protein interactions in intact eukaryotic cells by beta-galactosidase complementation. Proc Natl Acad Sci USA 94, 8405–8410.

    Article  PubMed  CAS  Google Scholar 

  14. Wehrman, T., Kleaveland, B., Her, J. H., Balint, R. F., Blau, H. M. (2002) Protein–protein interactions monitored in mammalian cells via complementation of beta-lactamase enzyme fragments. Proc Natl Acad Sci USA 99, 3469–3474.

    Article  PubMed  CAS  Google Scholar 

  15. Galarneau, A., Primeau, M., Trudeau, L. E., Michnick, S. W. (2002) beta-Lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein–protein interactions. Nat Biotechnol 20, 619–622.

    Article  PubMed  CAS  Google Scholar 

  16. Magliery, T. J., Wilson, C. G. M., Pan, W. L., et al. (2005) Detecting protein–protein interactions with a green fluorescent protein fragment reassembly trap: scope and mechanism. J Am Chem Soc 127, 146–157.

    Article  PubMed  CAS  Google Scholar 

  17. Nyfeler, B., Michnick, S. W., Hauri, H. P. (2005) Capturing protein interactions in the secretory pathway of living cells. Proc Natl Acad Sci USA 102, 6350–6355.

    Article  PubMed  CAS  Google Scholar 

  18. Luker, K. E., Smith, M. C. P., Luker, G. D., Gammon, S. T., Piwnica-Worms, H., Piwnica-Worms, D. P. (2004) Kinetics of regulated protein–protein interactions revealed with firefly luciferase complementation imaging in cells and living animals. Proc Natl Acad Sci USA 101, 12288–12293.

    Article  PubMed  CAS  Google Scholar 

  19. Kim, S. B., Kanno, A., Ozawa, T., Tao, H., Umezawa, Y. (2007) Nongenomic activity of ligands in the association of androgen receptor with Src Acs. Chem Biol 2, 484–492.

    CAS  Google Scholar 

  20. Kaihara, A., Kawai, Y., Sato, M., Ozawa, T., Umezawa, Y. (2003) Locating a protein–protein interaction in living cells via split Renilla luciferase complementation. Anal Chem 75, 4176–4181.

    Article  PubMed  CAS  Google Scholar 

  21. Paulmurugan, R., Gambhir, S. S. (2003) Monitoring protein–protein interactions using split synthetic Renilla luciferase protein-fragment-assisted complementation. Anal Chem 75, 1584–1589.

    Article  PubMed  CAS  Google Scholar 

  22. Remy, I., Michnick, S. W. (2006) A highly sensitive protein–protein interaction assay based on Gaussia luciferase. Nat Methods 3, 977–979.

    Article  PubMed  CAS  Google Scholar 

  23. Joung, J. K. (2001) Identifying and modifying protein-DNA and protein–protein interactions using a bacterial two-hybrid selection system. J Cell Biochem Supplement 37, 53–57.

    Google Scholar 

  24. Joung, J. K., Ramm, E. I., Pabo, C. O. (2000) A bacterial two-hybrid selection system for studying protein-DNA and protein–protein interactions Proc Natl Acad Sci USA 97, 7382–7387.

    Article  PubMed  CAS  Google Scholar 

  25. Shaywitz, A. J., Dove, S. L., Kornhauser, J. M., Hochschild, A., Greenberg, M. E. (2000) Magnitude of the CREB-dependent transcriptional response is determined by the strength of the interaction between the kinase-inducible domain of CREB and the KIX domain of CREB-binding protein. Mol Cell Biol 20, 9409–9422.

    Article  PubMed  CAS  Google Scholar 

  26. Michnick, S. W., Ear, P. H., Manderson, E. N., Remy, I., Stefan, E. (2007) Universal strategies in research and drug discovery based on protein-fragment complementation assays. Nat Rev Drug Discov 6, 569–582.

    Article  PubMed  CAS  Google Scholar 

  27. Kerppola, T. K. (2008) Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annu Rev Biophys Biomol Struct 37, 465–487.

    CAS  Google Scholar 

  28. Ozawa, T., Nogami, S., Sato, M., Ohya, Y., Umezawa, Y. (2000) A fluorescent indicator for detecting protein–protein interactions in vivo based on protein splicing. Anal Chem 72, 5151–5157.

    Article  PubMed  CAS  Google Scholar 

  29. Ozawa, T., Takeuchi, M., Kaihara, A., Sato, M., Umezawa, Y. (2001) Protein splicing-based reconstitution of split green fluorescent protein for monitoring protein–protein interactions in bacteria: improved sensitivity and reduced screening time. Anal Chem 73, 5866–5874.

    Article  PubMed  CAS  Google Scholar 

  30. Wu, H., Xu, M. Q., Liu, X. Q. (1998) Protein trans-splicing and functional mini-inteins of a cyanobacterial dnaB intein. Biochim Biophys Acta 1387, 422–432.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Agency (JST) and Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshio Umezawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kanno, A., Ozawa, T., Umezawa, Y. (2011). Detection of Protein–Protein Interactions in Bacteria by GFP-Fragment Reconstitution. In: Evans, Jr., T., Xu, MQ. (eds) Heterologous Gene Expression in E.coli. Methods in Molecular Biology, vol 705. Humana Press. https://doi.org/10.1007/978-1-61737-967-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-967-3_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61737-966-6

  • Online ISBN: 978-1-61737-967-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics