Skip to main content

Periplasmic Chaperones Used to Enhance Functional Secretion of Proteins in E. coli

  • Protocol
  • First Online:
Heterologous Gene Expression in E.coli

Part of the book series: Methods in Molecular Biology ((MIMB,volume 705))

Abstract

While Escherichia coli is in wide use as a host organism for preparative protein production, problems with the folding of the recombinant gene product as well as protein aggregation, i.e., formation of inclusion bodies, are frequently encountered. This is particularly true for proteins that carry structural disulfide bonds, including antibody fragments, cytokines, growth factors, and extracellular fragments of eukaryotic cell surface receptors. In these cases, secretion into the oxidizing milieu of the bacterial periplasm in principle enables disulfide bond formation, resulting in a correctly folded and soluble protein. However, this process often occurs at low efficiency, depending on the nature of the recombinant gene product. Therefore, we have developed the helper plasmid pTUM4, which effects overexpression of four established periplasmic chaperones and/or folding catalysts: the thiol-disulfide oxidoreductases DsbA and DsbC, which catalyze the formation and isomerization of disulfide bridges, and two peptidyl-prolyl cis/trans isomerases with chaperone activity, FkpA and SurA. Here, we present a detailed protocol how to use this system for the bacterial secretion of recombinant proteins, including human EGF as a new example, and we give hints on optimization of the expression procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Georgiou, G., Segatori, L. (2005) Preparative expression of secreted proteins in bacteria: status report and future prospects. Curr Opin Biotechnol 16, 538–545.

    Article  PubMed  CAS  Google Scholar 

  2. Mergulhao, F. J., Summers, D. K., Monteiro, G. A. (2005) Recombinant protein secretion in Escherichia coli. Biotechnol Adv 23, 177–202.

    Article  PubMed  CAS  Google Scholar 

  3. Skerra, A. (1993) Bacterial expression of immunoglobulin fragments. Curr Opin Immunol 5, 256–262.

    Article  PubMed  CAS  Google Scholar 

  4. Humphreys, D. P. (2003) Production of antibodies and antibody fragments in Escherichia coli and a comparison of their functions, uses and modification. Curr Opin Drug Discov Develop 6, 188–196.

    CAS  Google Scholar 

  5. Skerra, A., Plückthun, A. (1991) Secretion and in vivo folding of the Fab fragment of the antibody McPC603 in Escherichia coli: influence of disulphides and cis-prolines. Protein Eng 4, 971–979.

    Article  PubMed  CAS  Google Scholar 

  6. Choi, J. H., Lee, S. Y. (2004) Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 64, 625–635.

    Article  PubMed  CAS  Google Scholar 

  7. Baneyx, F., Mujacic, M. (2004) Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22, 1399–1408.

    Article  PubMed  CAS  Google Scholar 

  8. Chan, W., Helms, L. R., Brooks, I., Lee, G., Ngola, S., McNulty, D., Maleeff, B., Hensley, P., Wetzel, R. (1996) Mutational effects on inclusion body formation in the periplasmic expression of the immunoglobulin VL domain REI. Fold Des 1, 77–89.

    Article  PubMed  CAS  Google Scholar 

  9. Knappik, A., Krebber, C., Plückthun, A. (1993) The effect of folding catalysts on the in vivo folding process of different antibody fragments expressed in Escherichia coli. Biotechnology 11, 77–83.

    Article  PubMed  CAS  Google Scholar 

  10. Wülfing, C., Plückthun, A. (1994) Protein folding in the periplasm of Escherichia coli. Mol Microbiol 12, 685–692.

    Article  PubMed  Google Scholar 

  11. Bardwell, J. C., McGovern, K., Beckwith, J. (1991) Identification of a protein required for disulfide bond formation in vivo. Cell 67, 581–589.

    Article  PubMed  CAS  Google Scholar 

  12. Missiakas, D., Georgopoulos, C., Raina, S. (1994) The Escherichia coli dsbC (xprA) gene encodes a periplasmic protein involved in disulfide bond formation. EMBO J 13, 2013–2020.

    PubMed  CAS  Google Scholar 

  13. Shevchik, V. E., Condemine, G., Robert-Baudouy, J. (1994) Characterization of DsbC, a periplasmic protein of Erwinia chrysanthemi and Escherichia coli with disulfide isomerase activity. EMBO J 13, 2007–2012.

    PubMed  CAS  Google Scholar 

  14. Fischer, G., Tradler, T., Zarnt, T. (1998) The mode of action of peptidyl prolyl cis/trans isomerases in vivo: binding vs. catalysis. FEBS Lett 426, 17–20.

    Article  PubMed  CAS  Google Scholar 

  15. Fanghanel, J., Fischer, G. (2004) Insights into the catalytic mechanism of peptidyl prolyl cis/trans isomerases. Front Biosci 9, 3453–3478.

    Article  PubMed  Google Scholar 

  16. Rouviere, P. E., Gross, C. A. (1996) SurA, a periplasmic protein with peptidyl-prolyl isomerase activity, participates in the assembly of outer membrane porins. Genes Develop 10, 3170–3182.

    Article  PubMed  CAS  Google Scholar 

  17. Dartigalongue, C., Raina, S. (1998) A new heat-shock gene, ppiD, encodes a peptidyl-prolyl isomerase required for folding of outer membrane proteins in Escherichia coli. EMBO J 17, 3968–3980.

    Article  PubMed  CAS  Google Scholar 

  18. Liu, J., Walsh, C. T. (1990) Peptidyl-prolyl cis-trans-isomerase from Escherichia coli: a periplasmic homolog of cyclophilin that is not inhibited by cyclosporin A. Proc Natl Acad Sci USA 87, 4028–4032.

    Article  PubMed  CAS  Google Scholar 

  19. Horne, S. M., Young, K. D. (1995) Escherichia coli and other species of the Enterobacteriaceae encode a protein similar to the family of Mip-like FK506-binding proteins. Arch Microbiol 163, 357–365.

    Article  PubMed  CAS  Google Scholar 

  20. Lazar, S. W., Kolter, R. (1996) SurA assists the folding of Escherichia coli outer membrane proteins. J Bacteriol 178, 1770–1773.

    PubMed  CAS  Google Scholar 

  21. Hennecke, G., Nolte, J., Volkmer-Engert, R., Schneider-Mergener, J., Behrens, S. (2005) The periplasmic chaperone SurA exploits two features characteristic of integral outer membrane proteins for selective substrate recognition. J Biol Chem 280, 23540–23548.

    Article  PubMed  CAS  Google Scholar 

  22. Bitto, E., McKay, D. B. (2002) Crystallographic structure of SurA, a molecular chaperone that facilitates folding of outer membrane porins. Structure 10, 1489–1498.

    Article  PubMed  CAS  Google Scholar 

  23. Korndörfer, I. P., Dommel, M. K., Skerra, A. (2004) Structure of the periplasmic chaperone Skp suggests functional similarity with cytosolic chaperones despite differing architecture. Nat Struct Mol Biol 11, 1015–1020.

    Article  PubMed  Google Scholar 

  24. Schlapschy, M., Grimm, S., Skerra, A. (2006) A system for concomitant overexpression of four periplasmic folding catalysts to improve secretory protein production in Escherichia coli. Protein Eng Des Sel 19, 385–390.

    Article  PubMed  CAS  Google Scholar 

  25. Selzer, G., Som, T., Itoh, T., Tomizawa, J. (1983) The origin of replication of plasmid p15A and comparative studies on the nucleotide sequences around the origin of related plasmids. Cell 32, 119–129.

    Article  PubMed  CAS  Google Scholar 

  26. Alton, N. K., Vapnek, D. (1979) Nucleotide sequence analysis of the chloramphenicol resistance transposon Tn9. Nature 282, 864–869.

    Article  PubMed  CAS  Google Scholar 

  27. Skerra, A., Pfitzinger, I., Plückthun, A. (1991) The functional expression of antibody Fv fragments in Escherichia coli: improved vectors and a generally applicable purification technique. Biotechnology 9, 273–278.

    Article  PubMed  CAS  Google Scholar 

  28. Skerra, A. (1994) Use of the tetracycline promoter for the tightly regulated production of a murine antibody fragment in Escherichia coli. Gene 151, 131–135.

    Article  PubMed  CAS  Google Scholar 

  29. Sφrensen, H. P., Mortensen, K. K. (2005) Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 115, 113–128.

    Article  PubMed  CAS  Google Scholar 

  30. Yanisch-Perron, C., Vieira, J., Messing, J. (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103–119.

    Article  PubMed  CAS  Google Scholar 

  31. Strauch, K. L., Beckwith, J. (1988) An Escherichia coli mutation preventing degradation of abnormal periplasmic proteins. Proc Natl Acad Sci USA 85, 1576–1580.

    Article  PubMed  CAS  Google Scholar 

  32. Meerman, H. J., Georgiou, G. (1994) Construction and characterization of a set of E. coli strains deficient in all known loci affecting the proteolytic stability of secreted recombinant proteins. Biotechnology 12, 1107–1110.

    Article  CAS  Google Scholar 

  33. Schäfer, U., Beck, K., Müller, M. (1999) Skp, a molecular chaperone of Gram-negative bacteria, is required for the formation of soluble periplasmic intermediates of outer membrane proteins. J Biol Chem 274, 24567–24574.

    Article  PubMed  Google Scholar 

  34. Jensen, K. F. (1993) The Escherichia coli K-12 “wild types” W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J Bacteriol 175, 3401–3407.

    PubMed  CAS  Google Scholar 

  35. Studier, F. W., Moffatt, B. A. (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189, 113–130.

    Article  PubMed  CAS  Google Scholar 

  36. Breustedt, D. A., Schönfeld, D. L., Skerra, A. (2006) Comparative ligand-binding analysis of ten human lipocalins. Biochim Biophys Acta 1764, 161–173.

    PubMed  CAS  Google Scholar 

  37. Nasreen, A., Vogt, M., Kim, H. J., Eichinger, A., Skerra, A. (2006) Solubility engineering and crystallization of human apolipoprotein D. Protein Sci 15, 190–199.

    Article  PubMed  CAS  Google Scholar 

  38. Schönfeld, D. L., Ravelli, R. B., Mueller, U., Skerra, A. (2008) The 1.8-Å crystal structure of α1-acid glycoprotein (Orosomucoid) solved by UV RIP reveals the broad drug-binding activity of this human plasma lipocalin. J Mol Biol 384, 393–405.

    Article  PubMed  Google Scholar 

  39. Chatwell, L., Holla, A., Kaufer, B. B., Skerra, A. (2008) The carbohydrate recognition domain of Langerin reveals high structural similarity with the one of DC-SIGN but an additional, calcium-independent sugar-binding site. Mol Immunol 45, 1981–1994.

    Article  PubMed  CAS  Google Scholar 

  40. Friedrich, L., Stangl, S., Hahne, H., Küster, B., Köhler, P., Multhoff, G., Skerra, A. (2010) Bacterial production and functional characterization of the Fab fragment of the murine IgG1/λ monoclonal antibody cmHsp70.1, a reagent for tumour diagnostics. Protein Eng Des Sel 23, 161–168.

    Google Scholar 

  41. Outchkourov, N. S., Roeffen, W., Kaan, A., Jansen, J., Luty, A., Schuiffel, D., van Gemert, G. J., van de Vegte-Bolmer, M., Sauerwein, R. W., Stunnenberg, H. G. (2008) Correctly folded Pfs48/45 protein of Plasmodium falciparum elicits malaria transmission-blocking immunity in mice. Proc Natl Acad Sci USA 105, 4301–4305.

    Article  PubMed  CAS  Google Scholar 

  42. Xu, Y., Lewis, D., Chou, C. P. (2008) Effect of folding factors in rescuing unstable heterologous lipase B to enhance its overexpression in the periplasm of Escherichia coli. Appl Microbiol Biotechnol 79, 1035–1044.

    Article  PubMed  CAS  Google Scholar 

  43. Xu, Y., Yasin, A., Wucherpfennig, T., Chou, C. P. (2008) Enhancing functional expression of heterologous lipase in the periplasm of Escherichia coli. World J Microbiol Biotechnol 24, 2827–2835.

    Article  CAS  Google Scholar 

  44. Guo, C., Diao, H., Lian, Y., Yu, H., Gao, H., Zhang, Y., Lin, D. (2009) Recombinant expression and characterization of an epididymis-specific antimicrobial peptide BIN1b/SPAG11E. J Biotechnol 139, 33–37.

    Article  PubMed  CAS  Google Scholar 

  45. Skerra, A. (1994) A general vector, pASK84, for cloning, bacterial production, and single-step purification of antibody Fab fragments. Gene 141, 79–84.

    Article  PubMed  CAS  Google Scholar 

  46. Sambrook, J., Fritsch, E. F., Maniatis, T. (2001). Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  47. Schiweck, W., Skerra, A. (1995) Fermenter production of an artificial Fab fragment, rationally designed for the antigen cystatin, and its optimized crystallization through constant domain shuffling. Proteins 23, 561–565.

    Article  PubMed  CAS  Google Scholar 

  48. Schmidt, T. G., Skerra, A. (2007) The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nat Protoc 2, 1528–1535.

    Article  CAS  Google Scholar 

  49. Bell, G. I., Fong, N. M., Stempien, M. M., Wormsted, M. A., Caput, D., Ku, L. L., Urdea, M. S., Rall, L. B., Sanchez-Pescador, R. (1986) Human epidermal growth factor precursor: cDNA sequence, expression in vitro and gene organization. Nucleic Acids Res 14, 8427–8446.

    Article  PubMed  CAS  Google Scholar 

  50. Plückthun, A., Skerra, A. (1989) Expression of functional antibody Fv and Fab fragments in Escherichia coli. Methods Enzymol 178, 497–515.

    Article  PubMed  Google Scholar 

  51. Ewis, H. E., Lu, C. D. (2005) Osmotic shock: a mechanosensitive channel blocker can prevent release of cytoplasmic but not periplasmic proteins. FEMS Microbiol Lett 253, 295–301.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank S. Grimm, A. Holla, A. Richter, and K. Wachinger for their help in the construction of pTUM4 and related plasmids and their support in testing this system with various proteins of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Skerra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Schlapschy, M., Skerra, A. (2011). Periplasmic Chaperones Used to Enhance Functional Secretion of Proteins in E. coli . In: Evans, Jr., T., Xu, MQ. (eds) Heterologous Gene Expression in E.coli. Methods in Molecular Biology, vol 705. Humana Press. https://doi.org/10.1007/978-1-61737-967-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-967-3_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61737-966-6

  • Online ISBN: 978-1-61737-967-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics