Skip to main content

Adjustment of Codon Usage Frequencies by Codon Harmonization Improves Protein Expression and Folding

  • Protocol
  • First Online:
Heterologous Gene Expression in E.coli

Part of the book series: Methods in Molecular Biology ((MIMB,volume 705))

Abstract

Over the past two decades, prokaryotic expression systems have been widely exploited for the bioproduction of many therapeutic proteins. Much of the success can be attributed to the implementation of basic principles of prokaryotic protein translation and protein folding to the problems of heterologous expression (e.g. codon usage substitutions, tRNA isoacceptor co-expression, chaperone co-expression); however, expression in a heterologous host still remains an empirical process. To improve heterologous protein expression further we have developed an algorithm termed “codon harmonization” that best approximates codon usage frequencies from the native host and adjusts these for use in the heterologous system. The success of this methodology may be due to improved protein folding during translation. Although so far exclusively applied to Escherichia coli, codon harmonization may provide a general strategy for improving the expression of soluble, functional proteins during heterologous host expression.

Disclaimer

The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting true views of the Department of the Army or the Department of Defense or the U.S. Army.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Makrides, S. C. (1996) Strategies for achieving high level expression of genes in E. coli. Microbiol Rev 60, 512–538.

    PubMed  CAS  Google Scholar 

  2. Gustafsson, C., Govindarajan, S., Minshull, J. (2004) Codon bias and heterologous expression. Trends Biotechnol 22, 346.

    Article  PubMed  CAS  Google Scholar 

  3. Berisio, R., Schluenzen, F., Harms, J., Bashan, A., Auerbach, T., Baram, D., Yonath, A. (2003) Structural insight into the role of the ribosomal tunnel in cellular regulation. Nat Struct Biol 10, 366–370.

    Article  PubMed  CAS  Google Scholar 

  4. Purvis, I. J., Bettany, A. J., Santiago, T. C., Coggins, J. R., Duncan, K., Eason, R., Brown, A. J. (1987) The efficiency of folding of some proteins is increased by controlled rates of translation in vivo. A hypothesis. J Mol Biol 193, 413–417.

    Article  PubMed  CAS  Google Scholar 

  5. Wolin, S. L., Walter, P. (1988) Ribosome pausing and stacking during translation of a eukaryotic mRNA. EMBO J 7, 3559–3569.

    PubMed  CAS  Google Scholar 

  6. Varenne, S., Buc, J., Lloubes, R., Lazdunski, C. (1984) Translation is a non-uniform process. Effect of tRNA availability on the rate of elongation of nascent polypeptide chains. J Mol Biol 180, 549–576.

    Article  PubMed  CAS  Google Scholar 

  7. Weber, J. L. (1987) Analysis of sequences from the extremely A + T-rich genome of Plasmodium falciparum. Gene 52, 103–109.

    CAS  Google Scholar 

  8. Itakura, K., Hirose, T., Crea, R., Riggs, A. D., Heyneker, H. L., Bolivar, F., Boyer, H. W. (1977) Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin. Science 198, 1056–1063.

    Article  PubMed  CAS  Google Scholar 

  9. Pan, W., Ravot, E., Tolle, R., Frank, R., Mosbach, R., Turbachova, I., Bujard, H. (1999) Vaccine candidate MSP-1 from Plasmodium falciparum: a redesigned 4917 bp polynucleotide enables synthesis and isolation of full-length protein from Escherichia coli and mammalian cells. Nucleic Acids Res 27, 1094–1103.

    Article  PubMed  CAS  Google Scholar 

  10. Singh, S., Kennedy, M. C., Long, C. A., Saul, A. J., Miller, L. H., Stowers, A. W. (2003) Biochemical and immunological characterization of bacterially expressed and refolded Plasmodium falciparum 42-kilodalton C-terminal merozoite surface protein 1. Infect Immun 71, 6766–6774.

    Article  PubMed  CAS  Google Scholar 

  11. Kleizen, B., van Vlijmen, T., de Jonge, H. R., Braakman, I. (2005) Folding of CFTR is predominantly cotranslational. Mol Cell 20, 277–287.

    Article  PubMed  CAS  Google Scholar 

  12. Kramer, G., Ramachandiran, V., Hardesty, B. (2001) Cotranslational folding – omnia mea mecum porto? Int J Biochem Cell Biol 33, 541–553.

    Google Scholar 

  13. Svetlov, M. S., Kommer, A., Kolb, V. A., Spirin, A. S. (2006) Effective cotranslational folding of firefly luciferase without chaperones of the Hsp70 family. Protein Sci 15, 242–247.

    Article  PubMed  CAS  Google Scholar 

  14. Etchells, S. A., Hartl, F. U. (2004) The dynamic tunnel. Nat Struct Mol Biol 11, 391–392.

    Article  PubMed  CAS  Google Scholar 

  15. Marin, M. (2008) Folding at the rhythm of the rare codon beat. Biotechnol J. 3, 1047–1057.

    Article  PubMed  CAS  Google Scholar 

  16. Angov, E., Hillier, C. J., Kincaid, R. L., Lyon, J. A. (2008) Heterologous protein expression is enhanced by harmoning the codon usage frequencies of the target gene with those of the expression host. PLoS One 3, e2189.

    Article  PubMed  Google Scholar 

  17. Thanaraj, T. A., Argos, P. (1996) Ribosome-mediated translational pause and protein domain organization. Protein Sci 5, 1594–1612.

    Article  PubMed  CAS  Google Scholar 

  18. Thanaraj, T. A., Argos, P. (1996) Protein secondary structural types are differentially coded on messenger RNA. Protein Sci 5, 1973–1983.

    Article  PubMed  CAS  Google Scholar 

  19. Ikemura, T. (1981) Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. J Mol Biol 151, 389–409.

    Article  PubMed  CAS  Google Scholar 

  20. Bulmer, M. (1987) Coevolution of codon usage and transfer RNA abundance. Nature 325, 728–730.

    Article  PubMed  CAS  Google Scholar 

  21. Wen, J.-D., Lancaster, L., Hodges, C., Zeri, A.-C., Yoshimura, S. H., Noller, H. F., Bustamante, C., Tinoco, I., Jr. (2008) Following translation by single ribosomes one codon at a time. Nature 452, 598–603.

    Article  PubMed  CAS  Google Scholar 

  22. Baram, D., Yonath, A. (2005) From peptide-bond formation to cotranslational folding: dynamic, regulatory and evolutionary aspects. FEBS Lett 579, 948–954.

    Article  PubMed  CAS  Google Scholar 

  23. Moore, D. D. (2001) Gene Synthesis: Assembly of Target Sequences Using Mutually Priming Long Oligonucleotides in Current Protocols in Molecular Biology. Wiley, NJ, Unit 8.2B.

    Google Scholar 

  24. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  25. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., Bairoch, A. (2005) Protein identification and analysis tools on the ExPASy server. in (Walker, J. M. ed.), The Proteomics Protocols Handbook Humana Press, Totowa, NJ, pp. 571–607.

    Google Scholar 

  26. Kelly, S. M., Jess, T. J., Price, N. C. (2005) How to study proteins by circular dichroism. Biochim Biophys Acta 1751, 119–139.

    PubMed  CAS  Google Scholar 

  27. Zubkov, V. A., Birshteen, T. M., Milevskaya, I. S., Volkenstein, M. V. (1971) Circular dichroism calculation for random-coil polypeptide chains. Biopolymers 10, 2051–2061

    Article  CAS  Google Scholar 

  28. Andrade, M. A., Chacon, P., Merelo, J. J., Moran, F. (1993) Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network. Protein Eng 6, 383–390.

    Article  PubMed  CAS  Google Scholar 

  29. Merelo, J. J., Andrade, M. A., Prieto, A., Moran, F. (1994) Proteinotopic feature maps. Neurocomputing 6, 443–454.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the United States Agency for International Development, Project Number 936–6001, Award Number AAG-P-00–98–00006, Award Number AAG-P-00-98-00005 and by the United States Army Medical Research and Materiel Command. The authors acknowledge the conceptual contributions of Drs. Jeffrey A. Lyon and Randall L. Kincaid for “codon harmonization”. From the Division of Biochemistry, we thank Ms. Amy Michels for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelina Angov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Angov, E., Legler, P.M., Mease, R.M. (2011). Adjustment of Codon Usage Frequencies by Codon Harmonization Improves Protein Expression and Folding. In: Evans, Jr., T., Xu, MQ. (eds) Heterologous Gene Expression in E.coli. Methods in Molecular Biology, vol 705. Humana Press. https://doi.org/10.1007/978-1-61737-967-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-967-3_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61737-966-6

  • Online ISBN: 978-1-61737-967-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics