Advertisement

Selective Fluorescent Activation for Bioimaging the Expression of Nitric Oxide in Cellular and In Vivo Systems

  • Junfeng ZhangEmail author
  • Hao Hong
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 704)

Abstract

Nitric oxide serves as a messenger for cellular signaling and physiological reactions such as inflammatory responses in vivo. Fluorescent bioimaging can be a useful tool in nitric oxide functional research. However, current nitric oxide in vivo imaging protocols often result in suboptimal image quality. Selective fluorescent activation of probes after their reaction with nitric oxide is an appropriate way for imaging nitric oxide. Fluorescent naphtho[2,3-d]imidazol derivatives can react with copper II to form nonfluorescent compounds, which can then enable direct imaging of nitric oxide in vitro or in vivo, based on the redox action of copper II. These probes can be applied to image nitric oxide produced by inducible nitric oxide synthase in cellular systems such as lipopolysaccharide-activated murine macrophages. More importantly, the probes can be utilized for in vivo imaging of nitric oxide production, for example, in acute severe hepatic injury. This chapter describes the methods required to apply such probes as nitric oxide bioimaging agents with potential use for diagnostic and pathological studies of nitric oxide-related diseases.

Key words

Fluorescent bioimaging nitric oxide in vivo 

References

  1. 1.
    Ignarro, L. J., Buga, G. M., Wood, K. S., Byrns, R. E., Chaudhuri, G. (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci 84, 9265–9269.PubMedCrossRefGoogle Scholar
  2. 2.
    Palmer, R. M., Ferrige, A. G., Moncada, S. (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327, 524–526.PubMedCrossRefGoogle Scholar
  3. 3.
    Garthwaite, J. (2008) Concepts of neural nitric oxide-mediated transmission. Eur J Neurosci 27, 2783–2802.PubMedCrossRefGoogle Scholar
  4. 4.
    Bogdan, C. (2001) Nitric oxide and the immune response. Nat Immunol 2, 907–916.PubMedCrossRefGoogle Scholar
  5. 5.
    Fukumura, D., Kashiwagi, S., Jain, R. K. (2006) The role of nitric oxide in tumour progression. Nat Rev Cancer 6, 521–534.PubMedCrossRefGoogle Scholar
  6. 6.
    Sullivan, R., Graham, C. H. (2008) Chemosensitization of cancer by nitric oxide. Curr Pharm Des 14, 1113–1123.PubMedCrossRefGoogle Scholar
  7. 7.
    Mocellin, S., Bronte, V., Nitti, D. (2007) Nitric oxide, a double edged sword in cancer biology: searching for therapeutic opportunities. Med Res Rev 27, 317–352.PubMedCrossRefGoogle Scholar
  8. 8.
    Ridnour, L. A., Thomas, D. D., Donzelli, S., Espey, M. G., Roberts, D. D., Wink, D. A., Isenberg, J. S. (2006) The biphasic nature of nitric oxide responses in tumor biology. Antioxid Redox Signal 8, 1329–1337.PubMedCrossRefGoogle Scholar
  9. 9.
    Hirst, D., Robson, T. (2007) Targeting nitric oxide for cancer therapy. J Pharm Pharmacol 59, 3–13.PubMedCrossRefGoogle Scholar
  10. 10.
    Moriyama, E. H., Zheng, G., Wilson, B. C. (2008) Optical molecular imaging: from single cell to patient. Clin Pharmacol Ther 84, 267–271.PubMedCrossRefGoogle Scholar
  11. 11.
    Kojima, H., Nakatsubo, N., Kikuchi, K., Kawahara, S., Kirino, Y., Nagoshi, H., Hirata, Y., Nagano, T. (1998) Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal Chem 70, 2446–2453.PubMedCrossRefGoogle Scholar
  12. 12.
    Kojima, H., Hirotani, M., Nakatsubo, N., Kikuchi, K., Urano, Y., Higuchi, T., Hirata, Y., Nagano, T. (2001) Bioimaging of nitric oxide with fluorescent indicators based on the rhodamine chromophore. Anal Chem 73, 1967–1973.PubMedCrossRefGoogle Scholar
  13. 13.
    Sasaki, E., Kojima, H., Nishimatsu, H., Urano, Y., Kikuchi, K., Hirata, Y., Nagano, T. (2005) Highly sensitive near-infrared fluorescent probes for nitric oxide and their application to isolated organs. J Am Chem Soc 127, 3684–3685.PubMedCrossRefGoogle Scholar
  14. 14.
    Nagano, T., Yoshimura, T. (2002) Bioimaging of nitric oxide. Chem Rev 102, 1235–1270.PubMedCrossRefGoogle Scholar
  15. 15.
    Lim, M. H., Xu, D., Lippard, S. J. (2006) Visualization of nitric oxide in living cells by a copper-based fluorescent probe. Nat Chem Biol 2, 375–380.PubMedCrossRefGoogle Scholar
  16. 16.
    Lim, M. H., Lippard, S. J. (2005) Copper complexes for fluorescence-based NO detection in aqueous solution. J Am Chem Soc 127, 12170–12171.PubMedCrossRefGoogle Scholar
  17. 17.
    Ouyang, J., Hong, H., Zhao, Y., Shen, H., Shen, C., Zhang, C., Zhang, J. (2008) Bioimaging nitric oxide in activated macrophages in vitro and hepatic inflammation in vivo based on a copper-naphthoimidazol coordination compound. Nitric Oxide 19, 42–49.PubMedCrossRefGoogle Scholar
  18. 18.
    Oberholzer, A., Oberholzer, C., Bahjat, F. R., Edwards, C. K., Moldawer, L. L. (2001) Genetic determinants of lipopolysaccharide and D-galactosamine-mediated hepatocellular apoptosis and lethality. J Endotoxin Res 7, 375–380.PubMedGoogle Scholar
  19. 19.
    Huang, K. J., Wang, H., Ma, M., Zhang, X., Zhang, H. S. (2007) Real-time imaging of nitric oxide production in living cells with 1,3,5,7-tetramethyl-2,6-dicarbethoxy-8-(3',4'-diaminophenyl)-difluoroboradiaza-s-indacence by invert fluorescence microscope. Nitric Oxide 16, 36–43.PubMedCrossRefGoogle Scholar
  20. 20.
    Hong, H., Sun, J., Cai, W. (2009) Multimodality imaging of nitric oxide and nitric oxide synthases. Free Radic Biol Med 47, 684–698.PubMedCrossRefGoogle Scholar
  21. 21.
    Garvey, E. P., Oplinger, J. A., Furfine, E. S., Kiff, R. J., Laszlo, F., Whittle, B. J., Knowles, R. G. (1997) 1400 W is a slow, tight binding, and highly selective inhibitor of inducible nitric-oxide synthase in vitro and in vivo. J Biol Chem 272, 4959–4963.PubMedCrossRefGoogle Scholar
  22. 22.
    Ouyang, J., Hong, H., Shen, C., Zhao, Y., Ouyang, C., Dong, L., Zhu, J., Guo, Z., Zeng, K., Chen, J., Zhang, C., Zhang, J. (2008) A novel fluorescent probe for the detection of nitric oxide in vitro and in vivo. Free Radic Biol Med 45, 1426–1436.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life Sciences, Nanjing UniversityNanjingPeople’s Republic of China

Personalised recommendations