Nitric Oxide pp 153-168 | Cite as

β Cell Protection by Inhibition of iNOS Through Lentiviral Vector-Based Strategies

  • Sean O. HynesEmail author
  • Cillian McCabe
  • Timothy O’Brien
Part of the Methods in Molecular Biology book series (MIMB, volume 704)


Cytoprotective gene transfer to pancreatic islet β cell s may prove useful in preventing their destruction and prolonging islet graft survival after transplantation in patients with type 1 diabetes mellitus. A host of therapeutically relevant transgenes may potentially be incorporated into an appropriate gene delivery vehicle and used for islet modification. To examine this, we utilised a robust model of cytokine-induced β cell pathophysiology. Using this model, it is clear that antioxidant gene transfer confers no cytoprotective benefit. In contrast, we demonstrated that gene-based approaches to inhibit the activation of NF-κB following cytokine exposure harbours therapeutic utility in preserving islet β cell viability in the face of cytokine toxicity. We identified that NF-κB-dependent induction of iNOS is a critical determinant of β cell fate following cytokine exposure. Having identified the pivotal role of iNOS activation in cytokine-induced β cell pathophysiology, lentiviral vectors may be used to efficiently deliver small interfering RNA molecules to confer efficient iNOS gene silencing. We have shown that lentiviral vector-based shRNA delivery holds significant promise in preserving β cell viability following cytotoxic cytokine exposure.

Key words

Diabetes mellitus pancreatic islet cells iNOS small interfering RNAs NF-κB gene silencing gene therapy 


  1. 1.
    Debray-Sachs, M., Carnaud, C., Boitard, C., Cohen, H., Gresser, I., Bedossa, P., et al. (1991) Prevention of diabetes in NOD mice treated with antibody to murine IFN gamma. J Autoimmun 4, 237–248.PubMedCrossRefGoogle Scholar
  2. 2.
    Larsen, J. L., Duckworth, W. C., Stratta, R. J. (1994) Pancreas transplantation for type I diabetes mellitus. Do the benefits offset the risks and cost?. Postgrad Med 96, 105–111.PubMedGoogle Scholar
  3. 3.
    Ryan, E. A., Paty, B. W., Senior, P. A., Shapiro, A. M. (2004) Risks and side effects of islet transplantation. Curr Diab Rep 4, 304–309.PubMedCrossRefGoogle Scholar
  4. 4.
    Reckard, C. R., Ziegler, M. M., Barker, C. F. (1973) Physiological and immunological consequences of transplanting isolated pancreatic islets. Surgery 74, 91–99.PubMedGoogle Scholar
  5. 5.
    Shapiro, A. M., Lakey, J. R., Ryan, E. A., Korbutt, G. S., Toth, E., Warnock, G. L., et al. (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343, 230–238.PubMedCrossRefGoogle Scholar
  6. 6.
    Balamurugan, A. N., Bottino, R., Giannoukakis, N., Smetanka, C. (2006) Prospective and challenges of islet transplantation for the therapy of autoimmune diabetes. Pancreas 32, 231–243.PubMedCrossRefGoogle Scholar
  7. 7.
    Rabinovitch, A., Sorensen, O., Suarez-Pinzon, W. L., Power, R. F., Rajotte, R. V., Bleackley, R. C. (1994) Analysis of cytokine mRNA expression in syngeneic islet grafts of NOD mice: interleukin 2 and interferon gamma mRNA expression correlate with graft rejection and interleukin 10 with graft survival. Diabetologia 37, 833–837.PubMedCrossRefGoogle Scholar
  8. 8.
    Corbett, J. A., McDaniel, M. L. (1995) Intraislet release of interleukin 1 inhibits beta cell function by inducing beta cell expression of inducible nitric oxide synthase. J Exp Med 181, 559–568.PubMedCrossRefGoogle Scholar
  9. 9.
    Eizirik, D. L., Flodstrom, M., Karlsen, A. E., Welsh, N. (1996) The harmony of the spheres: inducible nitric oxide synthase and related genes in pancreatic beta cells. Diabetologia 39, 875–890.PubMedCrossRefGoogle Scholar
  10. 10.
    Hannon, G. J. (2002) RNA interference. Nature 418, 244–251.PubMedCrossRefGoogle Scholar
  11. 11.
    Hagerkvist, R., Mokhtari, D., Myers, J. W., Tengholm, A., Welsh, N. (2005) siRNA produced by recombinant dicer mediates efficient gene silencing in islet cells. Ann N Y Acad Sci 1040, 114–122.PubMedCrossRefGoogle Scholar
  12. 12.
    Bradley, S. P., Kowalik, T. F., Rastellini, C., da Costa, M. A., Bloomenthal, A. B., Cicalese, L., et al. (2005) Successful incorporation of short-interfering RNA into islet cells by in situ perfusion. Transplant Proc 37, 233–236.PubMedCrossRefGoogle Scholar
  13. 13.
    Bain, J. R., Schisler, J. C., Takeuchi, K., Newgard, C. B., Becker, T. C. (2004) An adenovirus vector for efficient RNA interference-mediated suppression of target genes in insulinoma cells and pancreatic islets of langerhans. Diabetes 53, 2190–2194.PubMedCrossRefGoogle Scholar
  14. 14.
    Nakajima-Nagata, N., Sugai, M., Sakurai, T., Miyazaki, J., Tabata, Y., Shimizu, A. (2004) Pdx-1 enables insulin secretion by regulating synaptotagmin 1 gene expression. Biochem Biophys Res Commun 318, 631–635.PubMedCrossRefGoogle Scholar
  15. 15.
    Burkhardt, B. R., Lyle, R., Qian, K., Arnold, A. S., Cheng, H., Atkinson, M. A., et al. (2006) Efficient delivery of siRNA into cytokine-stimulated insulinoma cells silences Fas expression and inhibits Fas-mediated apoptosis. FEBS Lett 580, 553–560.PubMedCrossRefGoogle Scholar
  16. 16.
    Beeharry, N., Chambers, J. A., Faragher, R. G., Garnett, K. E., Green, I. C. (2004) Analysis of cytokine-induced NO-dependent apoptosis using RNA interference or inhibition by 1,400 W. Nitric Oxide 10, 112–118.PubMedCrossRefGoogle Scholar
  17. 17.
    Zhang, N., Schroppel, B., Chen, D., Fu, S., Hudkins, K. L., Zhang, H., et al. (2003) Adenovirus transduction induces expression of multiple chemokines and chemokine receptors in murine beta cells and pancreatic islets. Am J Transplant 3, 1230–1241.PubMedCrossRefGoogle Scholar
  18. 18.
    McCabe, C., Samali, A., O‘Brien, T. (2006) beta cell cytoprotective strategies: establishing the relative roles for iNOS and ROS. Biochem Biophys Res Commun 342, 1240–1248.PubMedCrossRefGoogle Scholar
  19. 19.
    Ju, Q., Edelstein, D., Brendel, M. D., Brandhorst, D., Brandhorst, H., Bretzel, R. G., et al. (1998) Transduction of non-dividing adult human pancreatic beta cells by an integrating lentiviral vector. Diabetologia 41, 736–739.PubMedCrossRefGoogle Scholar
  20. 20.
    Gallichan, W. S., Kafri, T., Krahl, T., Verma, I. M., Sarvetnick, N. (1998) Lentivirus-mediated transduction of islet grafts with interleukin 4 results in sustained gene expression and protection from insulitis. Hum Gene Therapy 9, 2717–2726.CrossRefGoogle Scholar
  21. 21.
    Lu, Y., Dang, H., Middleton, B., Zhang, Z., Washburn, L., Campbell-Thompson, M., et al. (2004) Bioluminescent monitoring of islet graft survival after transplantation. Mol Therapy 9, 428–435.CrossRefGoogle Scholar
  22. 22.
    Giannoukakis, N., Mi, Z., Gambotto, A., Eramo, A., Ricordi, C., Trucco, M., et al. (1999) Infection of intact human islets by a lentiviral vector. Gene Therapy 6, 1545–1551.PubMedCrossRefGoogle Scholar
  23. 23.
    Kobinger, G. P., Deng, S., Louboutin, J. P., Vatamaniuk, M., Matschinsky, F., Markmann, J. F. (2004) Transduction of human islets with pseudotyped lentiviral vectors. Hum Gene Therapy 15, 211–219.CrossRefGoogle Scholar
  24. 24.
    Okitsu, T., Kobayashi, N., Totsugawa, T., Maruyama, M., Noguchi, H., Watanabe, T., et al. (2003) Lentiviral vector mediated gene delivery into non-dividing isolated islet cells. Transplant Proc 35, 483.PubMedCrossRefGoogle Scholar
  25. 25.
    McCabe, C.,, O‘Brien, T. (2007) The rational design of beta cell cytoprotective gene transfer strategies: targeting deleterious iNOS expression. Mol Biotechnol 37, 38–47.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sean O. Hynes
    • 1
    Email author
  • Cillian McCabe
    • 1
  • Timothy O’Brien
    • 1
  1. 1.Regenerative Medicine Institute, National University of IrelandGalwayIreland

Personalised recommendations